Publications

2016

Fu KA, Nathan R, Dinov ID, Li J, Toga AW. T2-Imaging Changes in the Nigrosome-1 Relate to Clinical Measures of Parkinson’s Disease. Front Neurol. 2016;7:174.
BACKGROUND: The nigrosome-1 region of the substantia nigra (SN) undergoes the greatest and earliest dopaminergic neuron loss in Parkinson’s disease (PD). As T2-weighted magnetic resonance imaging (MRI) scans are often collected with routine clinical MRI protocols, this investigation aims to determine whether T2-imaging changes in the nigrosome-1 are related to clinical measures of PD and to assess their potential as a more clinically accessible biomarker for PD. METHODS: Voxel intensity ratios were calculated for T2-weighted MRI scans from 47 subjects from the Parkinson’s Progression Markers Initiative database. Three approaches were used to delineate the SN and nigrosome-1: (1) manual segmentation, (2) automated segmentation, and (3) area voxel-based morphometry. Voxel intensity ratios were calculated from voxel intensity values taken from the nigrosome-1 and two areas of the remaining SN. Linear regression analyses were conducted relating voxel intensity ratios with the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) sub-scores for each subject.
Pujol S, Baldwin M, Nassiri J, Kikinis R, Shaffer K. Using 3D Modeling Techniques to Enhance Teaching of Difficult Anatomical Concepts. Acad Radiol. 2016;23(4):507–16.
RATIONALE AND OBJECTIVES: Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on three-dimensional (3D) reconstructions from actual patient data. MATERIALS AND METHODS: A total of 196 models of anatomical structures from 16 anonymized computed tomography datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen, and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. RESULTS: Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. CONCLUSIONS: The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomical variation among patients.
Liu S, Cai W, Pujol S, Kikinis R, Feng DD. Cross-View Neuroimage Pattern Analysis in Alzheimer’s Disease Staging. Front Aging Neurosci. 2016;8:23.
The research on staging of pre-symptomatic and prodromal phase of neurological disorders, e.g., Alzheimer’s disease (AD), is essential for prevention of dementia. New strategies for AD staging with a focus on early detection, are demanded to optimize potential efficacy of disease-modifying therapies that can halt or slow the disease progression. Recently, neuroimaging are increasingly used as additional research-based markers to detect AD onset and predict conversion of MCI and normal control (NC) to AD. Researchers have proposed a variety of neuroimaging biomarkers to characterize the patterns of the pathology of AD and MCI, and suggested that multi-view neuroimaging biomarkers could lead to better performance than single-view biomarkers in AD staging. However, it is still unclear what leads to such synergy and how to preserve or maximize. In an attempt to answer these questions, we proposed a cross-view pattern analysis framework for investigating the synergy between different neuroimaging biomarkers. We quantitatively analyzed nine types of biomarkers derived from FDG-PET and T1-MRI, and evaluated their performance in a task of classifying AD, MCI, and NC subjects obtained from the ADNI baseline cohort. The experiment results showed that these biomarkers could depict the pathology of AD from different perspectives, and output distinct patterns that are significantly associated with the disease progression. Most importantly, we found that these features could be separated into clusters, each depicting a particular aspect; and the inter-cluster features could always achieve better performance than the intra-cluster features in AD staging.
Kolesov I, Lee J, Sharp G, Vela P, Tannenbaum A. A Stochastic Approach to Diffeomorphic Point Set Registration with Landmark Constraints. IEEE Trans Pattern Anal Mach Intell. 2016;38(2):238–51.
This work presents a deformable point set registration algorithm that seeks an optimal set of radial basis functions to describe the registration. A novel, global optimization approach is introduced composed of simulated annealing with a particle filter based generator function to perform the registration. It is shown how constraints can be incorporated into this framework. A constraint on the deformation is enforced whose role is to ensure physically meaningful fields (i.e., invertible). Further, examples in which landmark constraints serve to guide the registration are shown. Results on 2D and 3D data demonstrate the algorithm’s robustness to noise and missing information.
Fan Q, Witzel T, Nummenmaa A, Van Dijk KRA, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J, Hedden T, Shaw EE, Hollinshead MO, Renvall V, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Buckner RL, Wedeen VJ, Wald LL, Toga AW, Rosen BR. MGH-USC Human Connectome Project Datasets with Ultra-high b-value Diffusion MRI. Neuroimage. 2016;124(Pt B):1108–14.
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.
Chen Y, Oh JH, Sandhu R, Lee S, Deasy JO, Tannenbaum A. Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016;2016:1302–6.
More than half of all cancer patients receive radiotherapy in their treatment process. However, our understanding of abnormal transcriptional responses to radiation remains poor. In this study, we employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This was performed for IR, UV, and mock datasets, separately. The difference curvature value between IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate the extent to which the gene responds to radiation. We found that in comparison of the top 200 genes identified from IR and UV graphs, about 20 30% genes were overlapping. Through gene ontology enrichment analysis, we found that the metabolic-related biological process was highly associated with both IR and UV radiation exposure.
Sandhu RS, Georgiou TT, Tannenbaum AR. Ricci Curvature: An Economic Indicator for Market Fragility and Systemic Risk. Sci Adv. 2016;2(5):e1501495.
Quantifying the systemic risk and fragility of financial systems is of vital importance in analyzing market efficiency, deciding on portfolio allocation, and containing financial contagions. At a high level, financial systems may be represented as weighted graphs that characterize the complex web of interacting agents and information flow (for example, debt, stock returns, and shareholder ownership). Such a representation often turns out to provide keen insights. We show that fragility is a system-level characteristic of "business-as-usual" market behavior and that financial crashes are invariably preceded by system-level changes in robustness. This was done by leveraging previous work, which suggests that Ricci curvature, a key geometric feature of a given network, is negatively correlated to increases in network fragility. To illustrate this insight, we examine daily returns from a set of stocks comprising the Standard and Poor’s 500 (S&P 500) over a 15-year span to highlight the fact that corresponding changes in Ricci curvature constitute a financial "crash hallmark." This work lays the foundation of understanding how to design (banking) systems and policy regulations in a manner that can combat financial instabilities exposed during the 2007-2008 crisis.
Gao Y, Liu W, Arjun S, Zhu L, Ratner V, Kurc T, Saltz J, Tannenbaum A. Multi-scale Learning Based Segmentation of Glands in Digital Colonrectal Pathology Images. Proc SPIE Int Soc Opt Eng. 2016;9791.
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
Gao Y, Ratner V, Zhu L, Diprima T, Kurc T, Tannenbaum A, Saltz J. Hierarchical Nucleus Segmentation in Digital Pathology Images. Proc SPIE Int Soc Opt Eng. 2016;9791.
Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.
Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RSE, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MW, Zhou J. Disrupted Salience Network Functional Connectivity and White-Matter Microstructure in Persons at Risk For Psychosis: Findings from the LYRIKS Study. Psychol Med. 2016;46(13):2771–83.
BACKGROUND: Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD: We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS: ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS: Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.