Publications by Year: 2011

Kapur T, Tempany CM, Jolesz FA. Proceedings of the 4th Image Guided Therapy Workshop. 2011;4 :1-121. 2011 IGT Workshop Proceedings
Moscufo N, Guttmann CRG, Meier D, Csapo I, Hildenbrand PG, Healy BC, Schmidt JA, Wolfson L. Brain regional lesion burden and impaired mobility in the elderly. Neurobiol Aging. 2011;32 (4) :646-54.Abstract
This study investigated the relationship of brain white matter (WM) lesions affecting specific neural networks with decreased mobility in ninety-nine healthy community-dwelling subjects ≥75 years old prospectively enrolled by age and mobility status. We assessed lesion burden in the genu, body and splenium of corpus callosum; anterior, superior and posterior corona radiata; anterior and posterior limbs of internal capsule; corticospinal tract; and superior longitudinal fasciculus. Burden in the splenium of corpus callosum (SCC) demonstrated the highest correlation particularly with walking speed (r=0.4, p<10(-4)), and in logistic regression it was the best regional predictor of low mobility performance. We also found that independent of mobility, corona radiata has the largest lesion burden with anterior (ACR) and posterior (PCR) aspects being the most frequently affected. The results suggest that compromised inter-hemispheric integration of visuospatial information through the SCC plays an important role in mobility impairment in the elderly. The relatively high lesion susceptibility of ACR and PCR in all subjects may obscure the importance of these lesions in mobility impairment.
Langs G, Menze BH, Lashkari D, Golland P. Detecting stable distributed patterns of brain activation using Gini contrast. Neuroimage. 2011;56 (2) :497-507.Abstract
The relationship between spatially distributed fMRI patterns and experimental stimuli or tasks offers insights into cognitive processes beyond those traceable from individual local activations. The multivariate properties of the fMRI signals allow us to infer interactions among individual regions and to detect distributed activations of multiple areas. Detection of task-specific multivariate activity in fMRI data is an important open problem that has drawn much interest recently. In this paper, we study and demonstrate the benefits of random forest classifiers and the associated Gini importance measure for selecting voxel subsets that form a multivariate neural response. The Gini importance measure quantifies the predictive power of a particular feature when considered as part of the entire pattern. The measure is based on a random sampling of fMRI time points and voxels. As a consequence the resulting voxel score, or Gini contrast, is highly reproducible and reliably includes all informative features. The method does not rely on a priori assumptions about the signal distribution, a specific statistical or functional model or regularization. Instead, it uses the predictive power of features to characterize their relevance for encoding task information. The Gini contrast offers an additional advantage of directly quantifying the task-relevant information in a multiclass setting, rather than reducing the problem to several binary classification subproblems. In a multicategory visual fMRI study, the proposed method identified informative regions not detected by the univariate criteria, such as the t-test or the F-test. Including these additional regions in the feature set improves the accuracy of multicategory classification. Moreover, we demonstrate higher classification accuracy and stability of the detected spatial patterns across runs than the traditional methods such as the recursive feature elimination used in conjunction with support vector machines.
Sandhu R, Dambreville S, Yezzi A, Tannenbaum A. A nonrigid kernel-based framework for 2D-3D pose estimation and 2D image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33 (6) :1098-115.Abstract
In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: first, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one's training set, we evolve the pre-image obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios.
Wang X, Grimson EWL, Westin C-F. Tractography segmentation using a hierarchical Dirichlet processes mixture model. Neuroimage. 2011;54 (1) :290-302.Abstract
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers.
Torelli F, Moscufo N, Garreffa G, Placidi F, Romigi A, Zannino S, Bozzali M, Fasano F, Giulietti G, Djonlagic I, et al. Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage. 2011;54 (2) :787-93.Abstract
Obstructive sleep apnea (OSA) is accompanied by neurocognitive impairment, likely mediated by injury to various brain regions. We evaluated brain morphological changes in patients with OSA and their relationship to neuropsychological and oximetric data. Sixteen patients affected by moderate-severe OSA (age: 55.8±6.7 years, 13 males) and fourteen control subjects (age: 57.6±5.1 years, 9 males) underwent 3.0 Tesla brain magnetic resonance imaging (MRI) and neuropsychological testing evaluating short- and long-term memory, executive functions, language, attention, praxia and non-verbal learning. Volumetric segmentation of cortical and subcortical structures and voxel-based morphometry (VBM) were performed. Patients and controls differed significantly in Rey Auditory-Verbal Learning test (immediate and delayed recall), Stroop test and Digit span backward scores. Volumes of cortical gray matter (GM), right hippocampus, right and left caudate were smaller in patients compared to controls, with also brain parenchymal fraction (a normalized measure of cerebral atrophy) approaching statistical significance. Differences remained significant after controlling for comorbidities (hypertension, diabetes, smoking, hypercholesterolemia). VBM analysis showed regions of decreased GM volume in right and left hippocampus and within more lateral temporal areas in patients with OSA. Our findings indicate that the significant cognitive impairment seen in patients with moderate-severe OSA is associated with brain tissue damage in regions involved in several cognitive tasks. We conclude that OSA can increase brain susceptibility to the effects of aging and other clinical and pathological occurrences.
Zalesky A, Fornito A, Seal ML, Cocchi L, Westin C-F, Bullmore ET, Egan GF, Pantelis C. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry. 2011;69 (1) :80-9.Abstract
BACKGROUND: Schizophrenia is believed to result from abnormal functional integration of neural processes thought to arise from aberrant brain connectivity. However, evidence for anatomical dysconnectivity has been equivocal, and few studies have examined axonal fiber connectivity in schizophrenia at the level of whole-brain networks. METHODS: Cortico-cortical anatomical connectivity at the scale of axonal fiber bundles was modeled as a network. Eighty-two network nodes demarcated functionally specific cortical regions. Sixty-four direction diffusion tensor-imaging coupled with whole-brain tractography was performed to map the architecture via which network nodes were interconnected in each of 74 patients with schizophrenia and 32 age- and gender-matched control subjects. Testing was performed to identify pairs of nodes between which connectivity was impaired in the patient group. The connectional architecture of patients was tested for changes in five network attributes: nodal degree, small-worldness, efficiency, path length, and clustering. RESULTS: Impaired connectivity in the patient group was found to involve a distributed network of nodes comprising medial frontal, parietal/occipital, and the left temporal lobe. Although small-world attributes were conserved in schizophrenia, the cortex was interconnected more sparsely and up to 20% less efficiently in patients. Intellectual performance was found to be associated with brain efficiency in control subjects but not in patients. CONCLUSIONS: This study presents evidence of widespread dysconnectivity in white-matter connectional architecture in a large sample of patients with schizophrenia. When considered from the perspective of recent evidence for impaired synaptic plasticity, this study points to a multifaceted pathophysiology in schizophrenia encompassing axonal as well as putative synaptic mechanisms.
de Luis-García R, Westin C-F, Alberola-López C. Gaussian mixtures on tensor fields for segmentation: applications to medical imaging. Comput Med Imaging Graph. 2011;35 (1) :16-30.Abstract
In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results.
Golby AJ, Kindlmann G, Norton I, Yarmarkovich A, Pieper S, Kikinis R. Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery. 2011;68 (2) :496-505.Abstract
BACKGROUND: Diffusion tensor imaging (DTI) infers the trajectory and location of large white matter tracts by measuring the anisotropic diffusion of water. DTI data may then be analyzed and presented as tractography for visualization of the tracts in 3 dimensions. Despite the important information contained in tractography images, usefulness for neurosurgical planning has been limited by the inability to define which are critical structures within the mass of demonstrated fibers and to clarify their relationship to the tumor. OBJECTIVE: To develop a method to allow the interactive querying of tractography data sets for surgical planning and to provide a working software package for the research community. METHODS: The tool was implemented within an open source software project. Echo-planar DTI at 3 T was performed on 5 patients, followed by tensor calculation. Software was developed that allowed the placement of a dynamic seed point for local selection of fibers and for fiber display around a segmented structure, both with tunable parameters. A neurosurgeon was trained in the use of software in < 1 hour and used it to review cases. RESULTS: Tracts near tumor and critical structures were interactively visualized in 3 dimensions to determine spatial relationships to lesion. Tracts were selected using 3 methods: anatomical and functional magnetic resonance imaging-defined regions of interest, distance from the segmented tumor volume, and dynamic seed-point spheres. CONCLUSION: Interactive tractography successfully enabled inspection of white matter structures that were in proximity to lesions, critical structures, and functional cortical areas, allowing the surgeon to explore the relationships between them.
Kim IT, Tannenbaum A, Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon N Y. 2011;49 (1) :54-61.Abstract
Maghemite (γ-Fe(2)O(3))/multi-walled carbon nanotubes (MWCNTs) hybrid-materials were synthesized and their anisotropic electrical conductivities as a result of their alignment in a polymer matrix under an external magnetic field were investigated. The tethering of γ-Fe(2)O(3) nanoparticles on the surface of MWCNT was achieved by a modified sol-gel reaction, where sodium dodecylbenzene sulfonate (NaDDBS) was used in order to inhibit the formation of a 3D iron oxide gel. These hybrid-materials, specifically, magnetized multi-walled carbon nanotubes (m-MWCNTs) were readily aligned parallel to the direction of a magnetic field even when using a relatively weak magnetic field. The conductivity of the epoxy composites formed in this manner increased with increasing m-MWCNT mass fraction in the polymer matrix. Furthermore, the conductivities parallel to the direction of magnetic field were higher than those in the perpendicular direction, indicating that the alignment of the m-MWCNT contributed to the enhancement of the anisotropic electrical properties of the composites in the direction of alignment.
Gao Y, Tannenbaum A. Combining Atlas and Active Contour for Automatic 3D Medical Image Segmentation. Proc IEEE Int Symp Biomed Imaging. 2011 :1401-1404.Abstract
Atlas based methods and active contours are two families of techniques widely used for the task of 3D medical image segmentation. In this work we present a coupled framework where the two methods are combined together, in order to exploit each's advantage while avoid their respective drawbacks. Indeed, the atlas based methods lacks the flexibility in locally tuning the segmentation boundary; whereas the active contour has the drawback that the final result heavily depends on the initialization as well as the contour evolution energy functional. Therefore, in the proposed work, the atlas based segmentation provides a probability map, which not only supplies the initial contour position, but also defines the contour evolution energy in an on-line fashion. Afterward, the active contour further converges to the desired object boundary. Finally, the method is tested on various 3D medical images to demonstrate its robustness as well as accuracy.
Chariker JH, Naaz F, Pani JR. Computer-based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention. J Educ Psychol. 2011;103 (1) :19-31.Abstract
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a 3D graphical model of the human brain, and sections derived from the model, tools for exploring neuroanatomy were developed to encourage adaptive exploration. This is an instructional method which incorporates graphical exploration in the context of repeated testing and feedback. With this approach, 72 participants learned either sectional anatomy alone or whole anatomy followed by sectional anatomy. Sectional anatomy was explored either with perceptually continuous navigation through the sections or with discrete navigation (as in the use of an anatomical atlas). Learning was measured longitudinally to a high performance criterion. Subsequent tests examined transfer of learning to the interpretation of biomedical images and long-term retention. There were several clear results of this study. On initial exposure to neuroanatomy, whole anatomy was learned more efficiently than sectional anatomy. After whole anatomy was mastered, learners demonstrated high levels of transfer of learning to sectional anatomy and from sectional anatomy to the interpretation of complex biomedical images. Learning whole anatomy prior to learning sectional anatomy led to substantially fewer errors overall than learning sectional anatomy alone. Use of continuous or discrete navigation through sectional anatomy made little difference to measured outcomes. Efficient learning, good long-term retention, and successful transfer to the interpretation of biomedical images indicated that computer-based learning using adaptive exploration can be a valuable tool in instruction of neuroanatomy and similar disciplines.
Agar NYR, Golby AJ, Ligon KL, Norton I, Mohan V, Wiseman JM, Tannenbaum A, Jolesz FA. Development of stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68 (2) :280-89; discussion 290.Abstract
BACKGROUND: Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. OBJECTIVE: To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. METHODS: Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. RESULTS: Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. CONCLUSION: The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of any organ and with a rapidity that allows real-time analysis.
Lienhard S, Malcolm JG, Westin C-F, Rathi Y. A full bi-tensor neural tractography algorithm using the unscented Kalman filter. EURASIP J Adv Signal Process. 2011;2011.Abstract
We describe a technique that uses tractography to visualize neural pathways in human brains by extending an existing framework that uses overlapping Gaussian tensors to model the signal. At each point on the fiber, an unscented Kalman filter is used to find the most consistent direction as a mixture of previous estimates and of the local model. In our previous framework, the diffusion ellipsoid had a cylindrical shape, i.e., the diffusion tensor's second and third eigenvalues were identical. In this paper, we extend the tensor representation so that the diffusion tensor is represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to trace fibers in areas containing crossings or branchings, and the tests also confirm the superiority of using a full tensor representation over the simplified model.
Pohl KM, Konukoglu E, Novellas S, Ayache N, Fedorov A, Talos I-F, Golby A, Wells WM, Kikinis R, Black PM. A new metric for detecting change in slowly evolving brain tumors: validation in meningioma patients. Neurosurgery. 2011;68 (1 Suppl Operative) :225-33.Abstract
BACKGROUND: Change detection is a critical component in the diagnosis and monitoring of many slowly evolving pathologies. OBJECTIVE: This article describes a semiautomatic monitoring approach using longitudinal medical images. We test the method on brain scans of patients with meningioma, which experts have found difficult to monitor because the tumor evolution is very slow and may be obscured by artifacts related to image acquisition. METHODS: We describe a semiautomatic procedure targeted toward identifying difficult-to-detect changes in brain tumor imaging. The tool combines input from a medical expert with state-of-the-art technology. The software is easy to calibrate and, in less than 5 minutes, returns the total volume of tumor change in mm. We test the method on postgadolinium, T1-weighted magnetic resonance images of 10 patients with meningioma and compare our results with experts' findings. We also perform benchmark testing with synthetic data. RESULTS: Our experiments indicated that experts' visual inspections are not sensitive enough to detect subtle growth. Measurements based on experts' manual segmentations were highly accurate but also labor intensive. The accuracy of our approach was comparable to the experts' results. However, our approach required far less user input and generated more consistent measurements. CONCLUSION: The sensitivity of experts' visual inspection is often too low to detect subtle growth of meningiomas from longitudinal scans. Measurements based on experts' segmentation are highly accurate but generally too labor intensive for standard clinical settings. We described an alternative metric that provides accurate and robust measurements of subtle tumor changes while requiring a minimal amount of user input.
Le Faucheur X, Hershkovits E, Tannenbaum R, Tannenbaum A. Nonparametric clustering for studying RNA conformations. IEEE/ACM Trans Comput Biol Bioinform. 2011;8 (6) :1604-19.Abstract
The local conformation of RNA molecules is an important factor in determining their catalytic and binding properties. The analysis of such conformations is particularly difficult due to the large number of degrees of freedom, such as the measured torsion angles per residue and the interatomic distances among interacting residues. In this work, we use a nearest-neighbor search method based on the statistical mechanical Potts model to find clusters in the RNA conformational space. The proposed technique is mostly automatic and may be applied to problems, where there is no prior knowledge on the structure of the data space in contrast to many other clustering techniques. Results are reported for both single residue conformations, where the parameter set of the data space includes four to seven torsional angles, and base pair geometries, where the data space is reduced to two dimensions. Moreover, new results are reported for base stacking geometries. For the first two cases, i.e., single residue conformations and base pair geometries, we get a very good match between the results of the proposed clustering method and the known classifications with only few exceptions. For the case of base stacking geometries, we validate our classification with respect to geometrical constraints and describe the content, and the geometry of the new clusters.
Kubicki M, Alvarado JL, Westin C-F, Tate DF, Markant D, Terry DP, Whitford TJ, De Siebenthal J, Bouix S, McCarley RW, et al. Stochastic tractography study of Inferior Frontal Gyrus anatomical connectivity in schizophrenia. Neuroimage. 2011;55 (4) :1657-64.Abstract
BACKGROUND: Abnormalities within language-related anatomical structures have been associated with clinical symptoms and with language and memory deficits in schizophrenia. Recent studies suggest disruptions in functional connectivity within the Inferior Frontal Gyrus (IFG) network in schizophrenia. However, due to technical challenges, anatomical connectivity abnormalities within this network and their involvement in clinical and cognitive deficits have not been studied. MATERIAL AND METHODS: Diffusion and anatomical scans were obtained from 23 chronic schizophrenia patients and 23 matched controls. The IFG was automatically segmented, and its white matter connections extracted and measured with newly-developed stochastic tractography tools. Correlations between anatomical structures and measures of semantic processing were also performed. RESULTS: White Matter connections between the IFG and posterior brain regions followed two distinct pathways: dorsal and ventral. Both demonstrated left lateralization, but ventral pathway abnormalities were only found in schizophrenia. IFG volumes also showed left lateralization and abnormalities in schizophrenia. Further, despite similar laterality and abnormality patterns, IFG volumes and white matter connectivity were not correlated with each other in either group. Interestingly, measures of semantic processing correlated with white matter connectivity in schizophrenia and with gray matter volumes in controls. Finally, hallucinations were best predicted by both gray matter and white matter measures together. CONCLUSIONS: Our results suggest abnormalities within the ventral IFG network in schizophrenia, with white matter abnormalities better predicting semantic deficits. The lack of a statistical relationship between coexisting gray and white matter deficits might suggest their different origin and the necessity for a multimodal approach in future schizophrenia studies.
Nir G, Tannenbaum A. Temporal Registration of Partial Data using Particle Filtering. Proc Int Conf Image Proc. 2011 :2177-80.Abstract
We propose a particle filtering framework for rigid registration of a model image to a time-series of partially observed images. The method incorporates a model-based segmentation technique in order to track the pose dynamics of an underlying observed object with time. An applicable algorithm is derived by employing the proposed framework for registration of a 3D model of an anatomical structure, which was segmented from preoperative images, to consecutive axial 2D slices of a magnetic resonance imaging (MRI) scan, which are acquired intraoperatively over time. The process is fast and robust with respect to image noise and clutter, variations of illumination, and different imaging modalities.
Depa M, Holmvang G, Schmidt EJ, Golland P, Sabuncu MR. Towards Effcient Label Fusion by Pre-Alignment of Training Data. Med Image Comput Comput Assist Interv. 2011;14 (WS) :38-46.Abstract
Label fusion is a multi-atlas segmentation approach that explicitly maintains and exploits the entire training dataset, rather than a parametric summary of it. Recent empirical evidence suggests that label fusion can achieve significantly better segmentation accuracy over classical parametric atlas methods that utilize a single coordinate frame. However, this performance gain typically comes at an increased computational cost due to the many pairwise registrations between the novel image and training images. In this work, we present a modified label fusion method that approximates these pairwise warps by first pre-registering the training images via a diffeomorphic groupwise registration algorithm. The novel image is then only registered once, to the template image that represents the average training subject. The pairwise spatial correspondences between the novel image and training images are then computed via concatenation of appropriate transformations. Our experiments on cardiac MR data suggest that this strategy for nonparametric segmentation dramatically improves computational efficiency, while producing segmentation results that are statistically indistinguishable from those obtained with regular label fusion. These results suggest that the key benefit of label fusion approaches is the underlying nonparametric inference algorithm, and not the multiple pairwise registrations.
Sundaram P, Mulkern RV, Wells WM, Triantafyllou C, Loddenkemper T, Bubrick EJ, Orbach DB. An empirical investigation of motion effects in eMRI of interictal epileptiform spikes. Magn Reson Imaging. 2011;29 (10) :1401-9.Abstract
We recently developed a functional neuroimaging technique called encephalographic magnetic resonance imaging (eMRI). Our method acquires rapid single-shot gradient-echo echo-planar MRI (repetition time=47 ms); it attempts to measure an MR signal more directly linked to neuronal electromagnetic activity than existing methods. To increase the likelihood of detecting such an MR signal, we recorded concurrent MRI and scalp electroencephalography (EEG) during fast (20-200 ms), localized, high-amplitude (>50 μV on EEG) cortical discharges in a cohort of focal epilepsy patients. Seen on EEG as interictal spikes, these discharges occur in between seizures and induced easily detectable MR magnitude and phase changes concurrent with the spikes with a lag of milliseconds to tens of milliseconds. Due to the time scale of the responses, localized changes in blood flow or hemoglobin oxygenation are unlikely to cause the MR signal changes that we observed. While the precise underlying mechanisms are unclear, in this study, we empirically investigate one potentially important confounding variable - motion. Head motion in the scanner affects both EEG and MR recording. It can produce brief "spike-like" artifacts on EEG and induce large MR signal changes similar to our interictal spike-related signal changes. In order to explore the possibility that interictal spikes were associated with head motions (although such an association had never been reported), we had previously tracked head position in epilepsy patients during interictal spikes and explicitly demonstrated a lack of associated head motion. However, that study was performed outside the MR scanner, and the root-mean-square error in the head position measurement was 0.7 mm. The large inaccuracy in this measurement therefore did not definitively rule out motion as a possible signal generator. In this study, we instructed healthy subjects to make deliberate brief (<500 ms) head motions inside the MR scanner and imaged these head motions with concurrent EEG and MRI. We compared these artifactual MR and EEG data to genuine interictal spikes. While per-voxel MR and per-electrode EEG time courses for the motion case can mimic the corresponding time courses associated with a genuine interictal spike, head motion can be unambiguously differentiated from interictal spikes via scalp EEG potential maps. Motion induces widespread changes in scalp potential, whereas interictal spikes are localized and have a regional fall-off in amplitude. These findings make bulk head motion an unlikely generator of the large spike-related MR signal changes that we had observed. Further work is required to precisely identify the underlying mechanisms.