Publications by Year: 2011

2011

Rathi Y, Michailovich O V, Setsompop K, Bouix S, Shenton ME, Westin CF. Sparse Multi-shell Diffusion Imaging. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):58–65.
Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of neural architecture of the brain. The data obtained from these in-vivo scans provides important information about the integrity and connectivity of neural fiber bundles in the brain. A multi-shell imaging (MSI) scan can be of great value in the study of several psychiatric and neurological disorders, yet its usability has been limited due to the long acquisition times required. A typical MSI scan involves acquiring a large number of gradient directions for the 2 (or more) spherical shells (several b-values), making the acquisition time significantly long for clinical application. In this work, we propose to use results from the theory of compressive sampling and determine the minimum number of gradient directions required to attain signal reconstruction similar to a traditional MSI scan. In particular, we propose a generalization of the single shell spherical ridgelets basis for sparse representation of multi shell signals. We demonstrate its efficacy on several synthetic and in-vivo data sets and perform quantitative comparisons with solid spherical harmonics based representation. Our preliminary results show that around 20-24 directions per shell are enough for robustly recovering the diffusion propagator.
Gaonkar B, Pohl K, Davatzikos C. Pattern based morphometry. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):459–66.
Voxel based morphometry (VBM) is widely used in the neuroimaging community to infer group differences in brain morphology. VBM is effective in quantifying group differences highly localized in space. However it is not equally effective when group differences might be based on interactions between multiple brain networks. We address this by proposing a new framework called pattern based morphometry (PBM). PBM is a data driven technique. It uses a dictionary learning algorithm to extract global patterns that characterize group differences. We test this approach on simulated and real data obtained from ADNI. In both cases PBM is able to uncover complex global patterns effectively.
Tristan-Vega A, Westin CF. Probabilistic ODF estimation from reduced HARDI data with sparse regularization. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):182–90.
High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements (nearly four times less than the standard for HARDI), we pose the estimation as an inverse problem with sparsity regularization. This allows the fast computation of a positive, unit-mass, probabilistic ODF from 14-16 samples, as we show with both synthetic diffusion signals and real HARDI data with typical parameters.
Maddah M, Miller J V, Sullivan E V, Pfefferbaum A, Rohlfing T. Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191–9.
We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface generation of sheet-like fiber bundles in order too initialize the proposed clustering algorithm. Applying the new method to a population study of brain aging on 24 subjects demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial patterns of group differences.
Gooya A, Pohl KM, Bilello M, Biros G, Davatzikos C. Joint segmentation and deformable registration of brain scans guided by a tumor growth model. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):532–40.
This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.
Risholm P, Ross J, Washko GR, Wells WM III. Probabilistic Elastography: Estimating Lung Elasticity. Inf Process Med Imaging. 2011;22:699–710.
We formulate registration-based elastography in a probabilistic framework and apply it to study lung elasticity in the presence of emphysematous and fibrotic tissue. The elasticity calculations are based on a Finite Element discretization of a linear elastic biomechanical model. We marginalize over the boundary conditions (deformation) of the biomechanical model to determine the posterior distribution over elasticity parameters. Image similarity is included in the likelihood, an elastic prior is included to constrain the boundary conditions, while a Markov model is used to spatially smooth the inhomogeneous elasticity. We use a Markov Chain Monte Carlo (MCMC) technique to characterize the posterior distribution over elasticity from which we extract the most probable elasticity as well as the uncertainty of this estimate. Even though registration-based lung elastography with inhomogeneous elasticity is challenging due the problem’s highly underdetermined nature and the sparse image information available in lung CT, we show promising preliminary results on estimating lung elasticity contrast in the presence of emphysematous and fibrotic tissue.
Wassermann D, Rathi Y, Bouix S, Kubicki M, Kikinis R, Shenton M, Westin CF. White Matter Bundle Registration and Population Analysis Based on Gaussian Processes. Inf Process Med Imaging. 2011;22:320–32.
This paper proposes a method for the registration of white matter tract bundles traced from diffusion images and its extension to atlas generation, Our framework is based on a Gaussian process representation of tract density maps. Such a representation avoids the need for point-to-point correspondences, is robust to tract interruptions and reconnections and seamlessly handles the comparison and combination of white matter tract bundles. Moreover, being a parametric model, this approach has the potential to be defined in the Gaussian processes’ parameter space, without the need for resampling the fiber bundles during the registration process. We use the similarity measure of our Gaussian process framework, which is in fact an inner product, to drive a diffeomorphic registration algorithm between two sets of homologous bundles which is not biased by point-to-point correspondences or the parametrization of the tracts. We estimate a dense deformation of the underlying white matter using the bundles as anatomical landmarks and obtain a population atlas of those fiber bundles. Finally we test our results in several different bundles obtained from in-vivo data.
Risholm P, Balter J, Wells WM III. Estimation of delivered dose in radiotherapy: the influence of registration uncertainty. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):548–55.
We present a probabilistic framework to estimate the accumulated radiation dose and the corresponding dose uncertainty that is delivered to important anatomical structures, e.g. the primary tumor and healthy surrounding organs, during radiotherapy. The dose uncertainty we report is a direct result of uncertainties in the estimates of the deformation which aligns the daily cone-beam CT images with the planning CT. The accumulated radiation dose is an important measure to monitor during treatment, in particular to see if it significantly deviates from the planned dose which might indicate that either the patient was not properly positioned before treatment or that the anatomy has changed due to the treatment. In the case of the latter, the treatment plan should be adaptively changed to align with the current patient anatomy. We estimate the accumulated dose distribution, and its uncertainty, retrospectively on a dataset acquired during treatment of cancer in the neck and show the dose distributions in the form of dose volume histograms.
Lee J, Lankton S, Tannenbaum A. Object tracking and target reacquisition based on 3-D range data for moving vehicles. IEEE Trans Image Process. 2011;20(10):2912–24.
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios.
Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P. A generative approach for image-based modeling of tumor growth. Inf Process Med Imaging. 2011;22:735–47.
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.