Fan Q, Witzel T, Nummenmaa A, Van Dijk KRA, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J, Hedden T, Shaw EE, Hollinshead MO, Renvall V, Zanzonico R, Keil B, Cauley S, Polimeni JR, Tisdall D, Buckner RL, Wedeen VJ, Wald LL, Toga AW, Rosen BR. MGH-USC Human Connectome Project Datasets with Ultra-high b-value Diffusion MRI. Neuroimage 2016;124(Pt B):1108-14.
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.
Sandhu RS, Georgiou TT, Tannenbaum AR. Ricci Curvature: An Economic Indicator for Market Fragility and Systemic Risk. Sci Adv 2016;2(5):e1501495.
Quantifying the systemic risk and fragility of financial systems is of vital importance in analyzing market efficiency, deciding on portfolio allocation, and containing financial contagions. At a high level, financial systems may be represented as weighted graphs that characterize the complex web of interacting agents and information flow (for example, debt, stock returns, and shareholder ownership). Such a representation often turns out to provide keen insights. We show that fragility is a system-level characteristic of "business-as-usual" market behavior and that financial crashes are invariably preceded by system-level changes in robustness. This was done by leveraging previous work, which suggests that Ricci curvature, a key geometric feature of a given network, is negatively correlated to increases in network fragility. To illustrate this insight, we examine daily returns from a set of stocks comprising the Standard and Poor’s 500 (S&P 500) over a 15-year span to highlight the fact that corresponding changes in Ricci curvature constitute a financial "crash hallmark." This work lays the foundation of understanding how to design (banking) systems and policy regulations in a manner that can combat financial instabilities exposed during the 2007-2008 crisis.
Chen Y, Oh JH, Sandhu R, Lee S, Deasy JO, Tannenbaum A. Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2016;2016:1302-6.
More than half of all cancer patients receive radiotherapy in their treatment process. However, our understanding of abnormal transcriptional responses to radiation remains poor. In this study, we employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This was performed for IR, UV, and mock datasets, separately. The difference curvature value between IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate the extent to which the gene responds to radiation. We found that in comparison of the top 200 genes identified from IR and UV graphs, about 20 30% genes were overlapping. Through gene ontology enrichment analysis, we found that the metabolic-related biological process was highly associated with both IR and UV radiation exposure.
Gao Y, Ratner V, Zhu L, Diprima T, Kurc T, Tannenbaum A, Saltz J. Hierarchical Nucleus Segmentation in Digital Pathology Images. Proc SPIE Int Soc Opt Eng 2016;9791
Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.
Gao Y, Liu W, Arjun S, Zhu L, Ratner V, Kurc T, Saltz J, Tannenbaum A. Multi-scale Learning Based Segmentation of Glands in Digital Colonrectal Pathology Images. Proc SPIE Int Soc Opt Eng 2016;9791
Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.
Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RSE, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MW, Zhou J. Disrupted Salience Network Functional Connectivity and White-Matter Microstructure in Persons at Risk For Psychosis: Findings from the LYRIKS Study. Psychol Med 2016;46(13):2771-83.
BACKGROUND: Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD: We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS: ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS: Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.
Bartling S, Jakab M, Kikinis R. CT-based Atlas of the Ear. 2016.
The Surgical Planning Laboratory at Brigham and Women’s Hospital, Harvard Medical School, developed the SPL Ear Atlas. The atlas was derived from a high-resolution flat-panel computed tomography (CT) scan (aprox 140 µm high contrast resultion), using semi-automated image segmentation and three-dimensional reconstruction techniques [Gupta, Bartling, et al. AJNR Am J Neuroradiol. 2004.]. The current version consists of: 1. the original CT scan; 2. a set of detailed label maps; 3. a set of three-dimensional models of the labeled anatomical structures; 4. mrb (Medical Reality Bundle) file archive that contains the mrml scene file and all data for loading into Slicer 4 for displaying the volumes in 3D Slicer version 4.0 or greater; 5. several pre-defined 3D-views (“anatomy teaching files”). The SPL Ear Atlas provides important reference information for surgical planning, anatomy teaching, and template driven segmentation. Visualization of the data requires 3D Slicer. This software package can be downloaded from here. We are pleased to make this atlas available to our colleagues for free download. Please note that the data is being distributed under the Slicer license. By downloading these data, you agree to acknowledge our contribution in any of your publications that result form the use of this atlas. This work is funded as part of the Neuroimaging Analysis Center, grant number P41 RR013218, by the NIH’s National Center for Research Resources (NCRR) and grant number P41 EB015902, by the NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Google Faculty Research Award.
Peters TM, Linte CA. Image-guided Interventions and Computer-integrated Therapy: Quo Vadis?. Med Image Anal 2016;33:56-63.
Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field.


Dalca A, Sridharan R, Sabuncu MR, Golland P. Predictive Modeling of Anatomy with Genetic and Clinical Data. Med Image Comput Comput Assist Interv 2015;9351:519-26.

We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image. Such predictive modeling promises to facilitate novel analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical change through a combination of population-wide regression and a non-parametric model of the subject’s health based on individual genetic and clinical indicators. In contrast to classical correlation and longitudinal analysis, we focus on predicting new observations from a single subject observation. We demonstrate prediction of follow-up anatomical scans in the ADNI cohort, and illustrate a novel analysis approach that compares a patient’s scans to the predicted subject-specific healthy anatomical trajectory.