Publications

2009

Kaban LB, Seldin EB, Kikinis R, Yeshwant K, Padwa BL, Troulis MJ. Clinical application of curvilinear distraction osteogenesis for correction of mandibular deformities. J Oral Maxillofac Surg. 2009;67(5):996–1008.
PURPOSE: To report the use of a semiburied curvilinear distraction device, with a 3-dimensional (3D) computed tomography treatment planning system, for correction of mandibular deformities. MATERIALS AND METHODS: This was a retrospective evaluation of 13 consecutive patients, with syndromic and nonsyndromic micrognathia, who underwent correction by curvilinear distraction osteogenesis. A 3D computed tomography scan was obtained for each patient and imported into a 3D treatment planning system (Slicer/Osteoplan). Surgical guides were constructed to localize the osteotomy and to drill holes to secure the distractor’s proximal and distal footplates to the mandible. Postoperatively, patients were followed by clinical examination and plain radiographs to ensure the desired vector of movement. At end distraction, when possible, a 3D computed tomography scan was obtained to document the final mandibular position.
Nunnery G, Hershkovits E, Tannenbaum A, Tannenbaum R. Adsorption of poly(methyl methacrylate) on concave Al2O3 surfaces in nanoporous membranes. Langmuir. 2009;25(16):9157–63.
The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below approximately 120,000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries.
Levitt JJ, Styner M, Niethammer M, Bouix S, Koo MS, Voglmaier MM, Dickey CC, Niznikiewicz MA, Kikinis R, McCarley RW, Shenton ME. Shape abnormalities of caudate nucleus in schizotypal personality disorder. Schizophr Res. 2009;110(1-3):127–39.
BACKGROUND: Previously, we reported abnormal volume and global shape in the caudate nucleus in schizotypal personality disorder (SPD). Here, we use a new shape measure which importantly permits local in addition to global shape analysis, as well as local correlations with behavioral measures. METHODS: Thirty-two female and 15 male SPDs, and 29 female and 14 male normal controls (NCLs), underwent brain magnetic resonance imaging (MRI). We assessed caudate shape measures using spherical harmonic-point distribution model (SPHARM-PDM) methodology. RESULTS: We found more pronounced global shape differences in the right caudate in male and female SPD, compared with NCLs. Local shape differences, principally in the caudate head, survived statistical correction on the right. Also, we performed correlations between local surface deformations with clinical measures and found significant correlations between local shape deflated deformations in the anterior medial surface of the caudate with verbal learning capacity in female SPD. CONCLUSIONS: Using SPHARM-PDM methodology, we found both global and local caudate shape abnormalities in male and female SPD, particularly right-sided, and largely restricted to limbic and cognitive anterior caudate. The most important and novel findings were bilateral statistically significant correlations between local surface deflations in the anterior medial surface of the head of the caudate and verbal learning capacity in female SPD. By extension, these local caudate correlation findings implicate the ventromedial prefrontal cortex (vmPFC), which innervates that area of the caudate, and demonstrate the utility of local shape analysis to investigate the relationship between specific subcortical and cortical brain structures in neuropsychiatric conditions.
Goodman AA, Rosolowsky EW, Borkin MA, Foster JB, Halle M, Kauffmann J, Pineda JE. A role for self-gravity at multiple length scales in the process of star formation. Nature. 2009;457(7225):63–6.
Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity’s role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that ’turbulent fragmentation’ alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a ’dendrogram’ (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact ’pre-stellar cores’ traced by peaks of dust emission are projected on the sky within one of the dendrogram’s self-gravitating ’leaves’. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in ’non-self-gravitating’ simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.
Rubin DL, Talos IF, Halle M, Musen MA, Kikinis R. Computational neuroanatomy: ontology-based representation of neural components and connectivity. BMC Bioinformatics. 2009;10 Suppl 2:S3.
BACKGROUND: A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. RESULTS: We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. CONCLUSION: Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.
Rathi Y, Michailovich O, Shenton ME, Bouix S. Directional functions for orientation distribution estimation. Med Image Anal. 2009;13(3):432–44.
Computing the orientation distribution function (ODF) from high angular resolution diffusion imaging (HARDI) signals makes it possible to determine the orientation of fiber bundles of the brain. The HARDI signals are samples measured from a spherical shell and thus require processing on the sphere. Past work on ODF estimation involved using the spherical harmonics or spherical radial basis functions. In this work, we propose three novel directional functions able to represent the measured signals in a very compact manner, i.e., they require very few parameters to completely describe the measured signal. Analytical expressions are derived for computing the corresponding ODF. The directional functions can represent diffusion in a particular direction and mixture models can be used to represent multi-fiber orientations. We show how to estimate the parameters of this mixture model and elaborate on the differences between these functions. We also compare this general framework with estimation of ODF using spherical harmonics on some real and synthetic data. The proposed method could be particularly useful in applications such as tractography and segmentation. Details are also given on different ways in which interpolation can be performed using directional functions. In particular, we discuss a complete Euclidean as well as a "hybrid" framework, comprising of the Riemannian as well as Euclidean spaces, to perform interpolation and compute geodesic distances between two ODF’s.
Venkataraman A, Van Dijk KRA, Buckner RL, Golland P. Exploring Functional Connectivity in fMRI via Clustering. Proc IEEE Int Conf Acoust Speech Signal Process. 2009;2009:441–4.
In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.
Sabuncu MR, Balci SK, Shenton ME, Golland P. Image-driven population analysis through mixture modeling. IEEE Trans Med Imaging. 2009;28(9):1473–87.
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional "modes."
Sabuncu MR, Yeo BTT, Van Leemput K, Fischl B, Golland P. Supervised nonparametric image parcellation. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):1075–83.
Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.
Yeo BTT, Sabuncu M, Golland P, Fischl B. Task-optimal registration cost functions. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):598–606.
In this paper, we propose a framework for learning the parameters of registration cost functions—such as the tradeoff between the regularization and image similiarity term—with respect to a specific task. Assuming the existence of labeled training data, we specialize the framework for the task of localizing hidden labels via image registration. We learn the parameters of the weighted sum of squared differences (wSSD) image similarity term that are optimal for the localization of Brodmann areas (BAs) in a new subject based on cortical geometry. We demonstrate state-of-the-art localization of V1, V2, BA44 and BA45.