Publications by Year: 2021


Hamid Behjat, Iman Aganj, David Abramian, Anders Eklund, and Carl-Fredrik Westin. 2021. Characterization of Spatial Dynamics of Fmri Data in White Matter Using Diffusion-Informed White Matter Harmonics. Proc IEEE Int Symp Biomed Imaging, 2021, Pp. 1586-90.

In this work, we leverage the Laplacian eigenbasis of voxel-wise white matter (WM) graphs derived from diffusion-weighted MRI data, dubbed WM harmonics, to characterize the spatial structure of WM fMRI data. Our motivation for such a characterization is based on studies that show WM fMRI data exhibit a spatial correlational anisotropy that coincides with underlying fiber patterns. By quantifying the energy content of WM fMRI data associated with subsets of WM harmonics across multiple spectral bands, we show that the data exhibits notable subtle spatial modulations under functional load that are not manifested during rest. WM harmonics provide a novel means to study the spatial dynamics of WM fMRI data, in such way that the analysis is informed by the underlying anatomical structure.

Juan Eugenio Iglesias, Benjamin Billot, Yaël Balbastre, Azadeh Tabari, John Conklin, R, Daniel C Alexander, Polina Golland, Brian L Edlow, Bruce Fischl, and Alzheimer s Disease Neuroimaging Initiative. 2021. Joint Super-Resolution and Synthesis of 1 Mm Isotropic MP-RAGE Volumes From Clinical MRI Exams With Scans of Different Orientation, Resolution and Contrast. Neuroimage, 237, Pp. 118206.

Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at

Maria A Di Biase, Suheyla Cetin-Karayumak, Amanda E Lyall, Andrew Zalesky, Kang Ik Kevin Cho, Fan Zhang, Marek Kubicki, Yogesh Rathi, Monica G Lyons, Sylvain Bouix, Tashrif Billah, Alan Anticevic, Charlie Schleifer, Brendan D Adkinson, Jie Lisa Ji, Zailyn Tamayo, Jean Addington, Carrie E Bearden, Barbara A Cornblatt, Matcheri S Keshavan, Daniel H Mathalon, Thomas H McGlashan, Diana O Perkins, Kristen S Cadenhead, Ming T Tsuang, Scott W Woods, William S Stone, Martha E Shenton, Tyrone D Cannon, and Ofer Pasternak. 2021. White Matter Changes in Psychosis Risk Relate to Development and Are Not Impacted by the Transition to Psychosis. Mol Psychiatry, 26, 11, Pp. 6833-44.

Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.

Paddy J Slator, Marco Palombo, Karla L Miller, Carl-Fredrik Westin, Frederik Laun, Daeun Kim, Justin P Haldar, Dan Benjamini, Gregory Lemberskiy, João P de Almeida Martins, and Jana Hutter. 2021. Combined Diffusion-Relaxometry Microstructure Imaging: Current Status and Future Prospects. Magn Reson Med, 86, 6, Pp. 2987-3011.

Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 * . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.

Hamid Behjat, Carl-Fredrik Westin, and Iman Aganj. 2021. Cortical Surface-Informed Volumetric Spatial Smoothing of fMRI Data via Graph Signal Processing. Annu Int Conf IEEE Eng Med Biol Soc, 2021, Pp. 3804-8.

Conventionally, as a preprocessing step, functional MRI (fMRI) data are spatially smoothed before further analysis, be it for activation mapping on task-based fMRI or functional connectivity analysis on resting-state fMRI data. When images are smoothed volumetrically, however, isotropic Gaussian kernels are generally used, which do not adapt to the underlying brain structure. Alternatively, cortical surface smoothing procedures provide the benefit of adapting the smoothing process to the underlying morphology, but require projecting volumetric data on to the surface. In this paper, leveraging principles from graph signal processing, we propose a volumetric spatial smoothing method that takes advantage of the gray-white and pial cortical surfaces, and as such, adapts the filtering process to the underlying morphological details at each point in the cortex.

Filip Szczepankiewicz, Jens Sjölund, Erica Dall Armellina, Sven Plein, Jürgen E Schneider, Irvin Teh, and Carl-Fredrik Westin. 2021. Motion-Compensated Gradient Waveforms for Tensor-Valued Diffusion Encoding by Constrained Numerical Optimization. Magn Reson Med, 85, 4, Pp. 2117-26.

PURPOSE: Diffusion-weighted MRI is sensitive to incoherent tissue motion, which may confound the measured signal and subsequent analysis. We propose a "motion-compensated" gradient waveform design for tensor-valued diffusion encoding that negates the effects bulk motion and incoherent motion in the ballistic regime. METHODS: Motion compensation was achieved by constraining the magnitude of gradient waveform moment vectors. The constraint was incorporated into a numerical optimization framework, along with existing constraints that account for b-tensor shape, hardware restrictions, and concomitant field gradients. We evaluated the efficacy of encoding and motion compensation in simulations, and we demonstrated the approach by linear and planar b-tensor encoding in a healthy heart in vivo. RESULTS: The optimization framework produced asymmetric motion-compensated waveforms that yielded b-tensors of arbitrary shape with improved efficiency compared with previous designs for tensor-valued encoding, and equivalent efficiency to previous designs for linear (conventional) encoding. Technical feasibility was demonstrated in the heart in vivo, showing vastly improved data quality when using motion compensation. The optimization framework is available online in open source. CONCLUSION: Our gradient waveform design is both more flexible and efficient than previous methods, facilitating tensor-valued diffusion encoding in tissues in which motion would otherwise confound the signal. The proposed design exploits asymmetric encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates compensation for concomitant gradient effects throughout the imaging volume.

Björn Lampinen, Jimmy Lätt, Johan Wasselius, Danielle van Westen, and Markus Nilsson. 2021. Time Dependence in Diffusion MRI Predicts Tissue Outcome in Ischemic Stroke Patients. Magn Reson Med, 86, 2, Pp. 754-64.

PURPOSE: Reperfusion therapy enables effective treatment of ischemic stroke presenting within 4-6 hours. However, tissue progression from ischemia to infarction is variable, and some patients benefit from treatment up until 24 hours. Improved imaging techniques are needed to identify these patients. Here, it was hypothesized that time dependence in diffusion MRI may predict tissue outcome in ischemic stroke. METHODS: Diffusion MRI data were acquired with multiple diffusion times in five non-reperfused patients at 2, 9, and 100 days after stroke onset. Maps of "rate of kurtosis change" (k), mean kurtosis, ADC, and fractional anisotropy were derived. The ADC maps defined lesions, normal-appearing tissue, and the lesion tissue that would either be infarcted or remain viable by day 100. Diffusion parameters were compared (1) between lesions and normal-appearing tissue, and (2) between lesion tissue that would be infarcted or remain viable. RESULTS: Positive values of k were observed within stroke lesions on day 2 (P = .001) and on day 9 (P = .023), indicating diffusional exchange. On day 100, high ADC values indicated infarction of 50 ± 20% of the lesion volumes. Tissue infarction was predicted by high k values both on day 2 (P = .026) and on day 9 (P = .046), by low mean kurtosis values on day 2 (P = .043), and by low fractional anisotropy values on day 9 (P = .029), but not by low ADC values. CONCLUSIONS: Diffusion time dependence predicted tissue outcome in ischemic stroke more accurately than the ADC, and may be useful for predicting reperfusion benefit.

Alireza Sedghi, Lauren J O Donnell, Tina Kapur, Erik Learned-Miller, Parvin Mousavi, and William M Wells. 2021. Image Registration: Maximum Likelihood, Minimum Entropy and Deep Learning. Med Image Anal, 69, Pp. 101939.

In this work, we propose a theoretical framework based on maximum profile likelihood for pairwise and groupwise registration. By an asymptotic analysis, we demonstrate that maximum profile likelihood registration minimizes an upper bound on the joint entropy of the distribution that generates the joint image data. Further, we derive the congealing method for groupwise registration by optimizing the profile likelihood in closed form, and using coordinate ascent, or iterative model refinement. We also describe a method for feature based registration in the same framework and demonstrate it on groupwise tractographic registration. In the second part of the article, we propose an approach to deep metric registration that implements maximum likelihood registration using deep discriminative classifiers. We show further that this approach can be used for maximum profile likelihood registration to discharge the need for well-registered training data, using iterative model refinement. We demonstrate that the method succeeds on a challenging registration problem where the standard mutual information approach does not perform well.

Lipeng Ning, Filip Szczepankiewicz, Markus Nilsson, Yogesh Rathi, and Carl-Fredrik Westin. 2021. Probing Tissue Microstructure by Diffusion Skewness Tensor Imaging. Sci Rep, 11, 1, Pp. 135.

Probing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical imaging and medical science. This work introduces an approach for analyzing diffusion magnetic resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived to characterize different ensembles of diffusion processes that are indistinguishable by existing techniques. The contributions of this work also include a theoretical proof that shows that, to estimate the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor diffusion encoding. This proof provides a guideline for the application of this technique. The properties of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a human brain.

Andrew Beers, James Brown, Ken Chang, Katharina Hoebel, Jay Patel, K, Sara M Tolaney, Priscilla Brastianos, Bruce Rosen, Elizabeth R Gerstner, and Jayashree Kalpathy-Cramer. 2021. DeepNeuro: An Open-Source Deep Learning Toolbox for Neuroimaging. Neuroinformatics, 19, 1, Pp. 127-40.
Translating deep learning research from theory into clinical practice has unique challenges, specifically in the field of neuroimaging. In this paper, we present DeepNeuro, a Python-based deep learning framework that puts deep neural networks for neuroimaging into practical usage with a minimum of friction during implementation. We show how this framework can be used to design deep learning pipelines that can load and preprocess data, design and train various neural network architectures, and evaluate and visualize the results of trained networks on evaluation data. We present a way of reproducibly packaging data pre- and postprocessing functions common in the neuroimaging community, which facilitates consistent performance of networks across variable users, institutions, and scanners. We show how deep learning pipelines created with DeepNeuro can be concisely packaged into shareable Docker and Singularity containers with user-friendly command-line interfaces.