Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke.

Bretzner M, Bonkhoff AK, Schirmer MD, Hong S, Dalca A, Donahue K, Giese AK, Etherton MR, Rist PM, Nardin M, Regenhardt RW, Leclerc X, Lopes R, Gautherot M, Wang C, Benavente OR, Cole JW, Donatti A, Griessenauer C, Heitsch L, Holmegaard L, Jood K, Jimenez-Conde J, Kittner SJ, Lemmens R, Levi CR, McArdle PF, McDonough CW, Meschia JF, Phuah CL, Rolfs A, Ropele S, Rosand J, Roquer J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Sousa A, Stanne TM, Strbian D, Tatlisumak T, Thijs V, Vagal A, Wasselius J, Woo D, Wu O, Zand R, Worrall BB, Maguire J, Lindgren AG, Jern C, Golland P, Kuchcinski G, Rost NS, Consortium MG and GI and the ISG. Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke. Neurology. 2023;100(8):e822-e833.

Abstract

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes.

METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input.

RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes.

DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.

Last updated on 05/12/2023
PubMed