Publications by Year: 2021

2021
Guder S, Pasternak O, Gerloff C, Schulz R. Strengthened Structure-Function Relationships of the Corticospinal Tract by Free Water Correction After Stroke. Brain Commun. 2021;3 (2) :fcab034.Abstract
The corticospinal tract is the most intensively investigated tract of the human motor system in stroke rehabilitative research. Diffusion-tensor-imaging gives insights into its microstructure, and transcranial magnetic stimulation assesses its excitability. Previous data on the interrelationship between both measures are contradictory. Correlative or predictive models which associate them with motor outcome are incomplete. Free water correction has been developed to enhance diffusion-tensor-imaging by eliminating partial volume with extracellular water, which could improve capturing stroke-related microstructural alterations, thereby also improving structure-function relationships in clinical cohorts. In the present cross-sectional study, data of 18 chronic stroke patients and 17 healthy controls, taken from a previous study on cortico-cerebellar motor tracts, were re-analysed: The data included diffusion-tensor-imaging data quantifying corticospinal tract microstructure with and without free water correction, transcranial magnetic stimulation data assessing recruitment curve properties of motor evoked potentials and detailed clinical data. Linear regression modelling was used to interrelate corticospinal tract microstructure, recruitment curves properties and clinical scores. The main finding of the present study was that free water correction substantially strengthens structure-function associations in stroke patients: Specifically, our data evidenced a significant association between fractional anisotropy of the ipsilesional corticospinal tract and its excitability ( = 0.001, adj.  = 0.54), with free water correction explaining additional 20% in recruitment curve variability. For clinical scores, only free water correction leads to the reliable detection of significant correlations between ipsilesional corticospinal tract fractional anisotropy and residual grip ( = 0.001, adj.  = 0.70) and pinch force ( < 0.001, adj.  = 0.72). Finally, multimodal models can be improved by free water correction as well. This study evidences that corticospinal tract microstructure directly relates to its excitability in stroke patients. It also shows that unexplained variance in motor outcome is considerably reduced by free water correction arguing that it might serve as a powerful tool to improve existing models of structure-function associations and potentially also outcome prediction after stroke.
He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, et al. Comparison of Multiple Tractography Methods for Reconstruction of the Retinogeniculate Visual Pathway Using Diffusion MRI. Hum Brain Mapp. 2021;42 (12) :3887-904.Abstract
The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.
Maziero MP, Seitz-Holland J, Cho KIK, Goldenberg JE, Tanamatis TW, Diniz JB, Cappi C, Alice de Mathis M, Otaduy MCG, da Graça Morais Martin M, et al. Cellular and Extracellular White Matter Abnormalities in Obsessive-Compulsive Disorder: A Diffusion MRI Study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6 (10) :983-91.Abstract
BACKGROUND: While previous studies have implicated white matter (WM) as a core pathology of Obsessive-Compulsive Disorder (OCD), the underlying neurobiological processes remain elusive. This study utilizes free-water imaging derived from diffusion MRI to identify cellular and extracellular WM abnormalities in patients with OCD compared to controls (Cs). Next, we investigate the association between diffusion measures, and clinical variables in patients. METHODS: We collected diffusion-weighted MRI and clinical data from eighty-three patients with OCD (56 females/27 males, age=37.7 ± 10.6) and 52 Cs (27 females/25 males, age=32.8 ± 11.5). Fractional anisotropy (FA), fractional anisotropy of cellular tissue (FAT), and extracellular free-water (FW) maps were extracted and compared between patients and Cs using tract-based spatial statistics, and voxel-wise comparison in FSL's Randomise. Next, we correlated these WM measures with clinical variables (age-of-onset and symptom severity) and compared them between patients with and without comorbidities and patients with and without psychiatric medication. RESULTS: Patients with OCD demonstrated lower FA (43.4% of the WM skeleton), FAт (31% of the WM skeleton), and higher FW (22.5% of the WM skeleton) compared to Cs. We did not observe significant correlations between diffusion measures and clinical variables. Comorbidities and medication status did not influence diffusion measures. CONCLUSIONS: Our findings of widespread FA, FAт, and FW abnormalities suggest that OCD is associated with both microstructural cellular and extracellular abnormalities beyond the cortico-striato-thalamo-cortical circuits. Future multimodal longitudinal studies are needed to understand better the influence of essential clinical variables across the illness trajectory.
Szczepankiewicz F, Westin C-F, Nilsson M. Gradient Waveform Design for Tensor-valued Encoding in Diffusion MRI. J Neurosci Methods. 2021;348 :109007.Abstract
Diffusion encoding along multiple spatial directions per signal acquisition can be described in terms of a b-tensor. The benefit of tensor-valued diffusion encoding is that it unlocks the 'shape of the b-tensor' as a new encoding dimension. By modulating the b-tensor shape, we can control the sensitivity to microscopic diffusion anisotropy which can be used as a contrast mechanism; a feature that is inaccessible by conventional diffusion encoding. Since imaging methods based on tensor-valued diffusion encoding are finding an increasing number of applications we are prompted to highlight the challenge of designing the optimal gradient waveforms for any given application. In this review, we first establish the basic design objectives in creating field gradient waveforms for tensor-valued diffusion MRI. We also survey additional design considerations related to limitations imposed by hardware and physiology, potential confounding effects that cannot be captured by the b-tensor, and artifacts related to the diffusion encoding waveform. Throughout, we discuss the expected compromises and tradeoffs with an aim to establish a more complete understanding of gradient waveform design and its impact on accurate measurements and interpretations of data.
Zhang F, Breger A, Cho KIK, Ning L, Westin C-F, O'Donnell LJ, Pasternak O. Deep Learning Based Segmentation of Brain Tissue from Diffusion MRI. Neuroimage. 2021;233 :117934.Abstract
Segmentation of brain tissue types from diffusion MRI (dMRI) is an important task, required for quantification of brain microstructure and for improving tractography. Current dMRI segmentation is mostly based on anatomical MRI (e.g., T1- and T2-weighted) segmentation that is registered to the dMRI space. However, such inter-modality registration is challenging due to more image distortions and lower image resolution in dMRI as compared with anatomical MRI. In this study, we present a deep learning method for diffusion MRI segmentation, which we refer to as DDSeg. Our proposed method learns tissue segmentation from high-quality imaging data from the Human Connectome Project (HCP), where registration of anatomical MRI to dMRI is more precise. The method is then able to predict a tissue segmentation directly from new dMRI data, including data collected with different acquisition protocols, without requiring anatomical data and inter-modality registration. We train a convolutional neural network (CNN) to learn a tissue segmentation model using a novel augmented target loss function designed to improve accuracy in regions of tissue boundary. To further improve accuracy, our method adds diffusion kurtosis imaging (DKI) parameters that characterize non-Gaussian water molecule diffusion to the conventional diffusion tensor imaging parameters. The DKI parameters are calculated from the recently proposed mean-kurtosis-curve method that corrects implausible DKI parameter values and provides additional features that discriminate between tissue types. We demonstrate high tissue segmentation accuracy on HCP data, and also when applying the HCP-trained model on dMRI data from other acquisitions with lower resolution and fewer gradient directions.
Ramos-Llordén G, Vegas-Sánchez-Ferrero G, Liao C, Westin C-F, Setsompop K, Rathi Y. SNR-Enhanced Diffusion MRI With Structure-Preserving Low-Rank Denoising in Reproducing Kernel Hilbert Spaces. Magn Reson Med. 2021;86 (3) :1614-32.Abstract
PURPOSE: To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that leverages nonlinear redundancy in the data to boost the SNR while preserving signal information. METHODS: We exploit nonlinear redundancy of the dMRI data by means of kernel principal component analysis (KPCA), a nonlinear generalization of PCA to reproducing kernel Hilbert spaces. By mapping the signal to a high-dimensional space, a higher level of redundant information is exploited, thereby enabling better denoising than linear PCA. We implement KPCA with a Gaussian kernel, with parameters automatically selected from knowledge of the noise statistics, and validate it on realistic Monte Carlo simulations as well as with in vivo human brain submillimeter and low-resolution dMRI data. We also demonstrate KPCA denoising on multi-coil dMRI data. RESULTS: SNR improvements up to 2.7 were obtained in real in vivo datasets denoised with KPCA, in comparison to SNR gains of up to 1.8 using a linear PCA denoising technique called Marchenko-Pastur PCA (MPPCA). Compared to gold-standard dataset references created from averaged data, we showed that lower normalized root mean squared error was achieved with KPCA compared to MPPCA. Statistical analysis of residuals shows that anatomical information is preserved and only noise is removed. Improvements in the estimation of diffusion model parameters such as fractional anisotropy, mean diffusivity, and fiber orientation distribution functions were also demonstrated. CONCLUSION: Nonlinear redundancy of the dMRI signal can be exploited with KPCA, which allows superior noise reduction/SNR improvements than the MPPCA method, without loss of signal information.
Nitsch J, Sack J, Halle MW, Moltz JH, Wall A, Rutherford AE, Kikinis R, Meine H. MRI-Based Radiomic Feature Analysis of End-Stage Liver Disease for Severity Stratification. Int J Comput Assist Radiol Surg. 2021;16 (3) :457-66.Abstract
PURPOSE: We aimed to develop a predictive model of disease severity for cirrhosis using MRI-derived radiomic features of the liver and spleen and compared it to the existing disease severity metrics of MELD score and clinical decompensation. The MELD score is compiled solely by blood parameters, and so far, it was not investigated if extracted image-based features have the potential to reflect severity to potentially complement the calculated score. METHODS: This was a retrospective study of eligible patients with cirrhosis ([Formula: see text]) who underwent a contrast-enhanced MR screening protocol for hepatocellular carcinoma (HCC) screening at a tertiary academic center from 2015 to 2018. Radiomic feature analyses were used to train four prediction models for assessing the patient's condition at time of scan: MELD score, MELD score [Formula: see text] 9 (median score of the cohort), MELD score [Formula: see text] 15 (the inflection between the risk and benefit of transplant), and clinical decompensation. Liver and spleen segmentations were used for feature extraction, followed by cross-validated random forest classification. RESULTS: Radiomic features of the liver and spleen were most predictive of clinical decompensation (AUC 0.84), which the MELD score could predict with an AUC of 0.78. Using liver or spleen features alone had slightly lower discrimination ability (AUC of 0.82 for liver and AUC of 0.78 for spleen features only), although this was not statistically significant on our cohort. When radiomic prediction models were trained to predict continuous MELD scores, there was poor correlation. When stratifying risk by splitting our cohort at the median MELD 9 or at MELD 15, our models achieved AUCs of 0.78 or 0.66, respectively. CONCLUSIONS: We demonstrated that MRI-based radiomic features of the liver and spleen have the potential to predict the severity of liver cirrhosis, using decompensation or MELD status as imperfect surrogate measures for disease severity.
Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Biase MD, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S, et al. MK-Curve Improves Sensitivity to Identify White Matter Alterations in Clinical High Risk for Psychosis. Neuroimage. 2021;226 :117564.Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI parameters such as mean kurtosis (MK) provide additional subtle information to that provided by popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect white matter abnormalities, especially in populations that are not expected to show severe brain pathologies. However, DKI parameters often yield artifactual output values that are outside of the biologically plausible range, which diminish sensitivity to identify true microstructural changes. Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with implausible DKI parameters, and demonstrated its improved performance against other approaches that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve method to improve the identification of white matter abnormalities in group comparisons. To do so, we compared group differences, with and without the MK-Curve correction, between 115 individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also compared the correlation of the corrected and uncorrected DKI parameters with clinical characteristics. Following the MK-curve correction, the group differences had larger effect sizes and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI parameters displayed stronger correlations with clinical variables in CHR individuals, demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve correction our analyses found widespread lower MK in CHR that overlapped with lower fractional anisotropy (FA), and both measures were significantly correlated with a decline in functioning and with more severe symptoms. These observations further characterize white matter alterations in the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. The improvement in group differences and stronger correlation with clinical variables suggest that applying MK-curve would be beneficial for the detection and characterization of subtle group differences in other experiments as well.
Beers A, Brown J, Chang K, Hoebel K, Patel J, Ly IK, Tolaney SM, Brastianos P, Rosen B, Gerstner ER, et al. DeepNeuro: An Open-Source Deep Learning Toolbox for Neuroimaging. Neuroinformatics. 2021;19 (1) :127-40.Abstract
Translating deep learning research from theory into clinical practice has unique challenges, specifically in the field of neuroimaging. In this paper, we present DeepNeuro, a Python-based deep learning framework that puts deep neural networks for neuroimaging into practical usage with a minimum of friction during implementation. We show how this framework can be used to design deep learning pipelines that can load and preprocess data, design and train various neural network architectures, and evaluate and visualize the results of trained networks on evaluation data. We present a way of reproducibly packaging data pre- and postprocessing functions common in the neuroimaging community, which facilitates consistent performance of networks across variable users, institutions, and scanners. We show how deep learning pipelines created with DeepNeuro can be concisely packaged into shareable Docker and Singularity containers with user-friendly command-line interfaces.

Pages