Publications by Year: 2021

Nitsch J, Sack J, Halle MW, Moltz JH, Wall A, Rutherford AE, Kikinis R, Meine H. MRI-Based Radiomic Feature Analysis of End-Stage Liver Disease for Severity Stratification. Int J Comput Assist Radiol Surg. 2021;16 (3) :457-66.Abstract
PURPOSE: We aimed to develop a predictive model of disease severity for cirrhosis using MRI-derived radiomic features of the liver and spleen and compared it to the existing disease severity metrics of MELD score and clinical decompensation. The MELD score is compiled solely by blood parameters, and so far, it was not investigated if extracted image-based features have the potential to reflect severity to potentially complement the calculated score. METHODS: This was a retrospective study of eligible patients with cirrhosis ([Formula: see text]) who underwent a contrast-enhanced MR screening protocol for hepatocellular carcinoma (HCC) screening at a tertiary academic center from 2015 to 2018. Radiomic feature analyses were used to train four prediction models for assessing the patient's condition at time of scan: MELD score, MELD score [Formula: see text] 9 (median score of the cohort), MELD score [Formula: see text] 15 (the inflection between the risk and benefit of transplant), and clinical decompensation. Liver and spleen segmentations were used for feature extraction, followed by cross-validated random forest classification. RESULTS: Radiomic features of the liver and spleen were most predictive of clinical decompensation (AUC 0.84), which the MELD score could predict with an AUC of 0.78. Using liver or spleen features alone had slightly lower discrimination ability (AUC of 0.82 for liver and AUC of 0.78 for spleen features only), although this was not statistically significant on our cohort. When radiomic prediction models were trained to predict continuous MELD scores, there was poor correlation. When stratifying risk by splitting our cohort at the median MELD 9 or at MELD 15, our models achieved AUCs of 0.78 or 0.66, respectively. CONCLUSIONS: We demonstrated that MRI-based radiomic features of the liver and spleen have the potential to predict the severity of liver cirrhosis, using decompensation or MELD status as imperfect surrogate measures for disease severity.
Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Biase MD, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S, et al. MK-Curve Improves Sensitivity to Identify White Matter Alterations in Clinical High Risk for Psychosis. Neuroimage. 2021;226 :117564.Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI parameters such as mean kurtosis (MK) provide additional subtle information to that provided by popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect white matter abnormalities, especially in populations that are not expected to show severe brain pathologies. However, DKI parameters often yield artifactual output values that are outside of the biologically plausible range, which diminish sensitivity to identify true microstructural changes. Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with implausible DKI parameters, and demonstrated its improved performance against other approaches that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve method to improve the identification of white matter abnormalities in group comparisons. To do so, we compared group differences, with and without the MK-Curve correction, between 115 individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also compared the correlation of the corrected and uncorrected DKI parameters with clinical characteristics. Following the MK-curve correction, the group differences had larger effect sizes and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI parameters displayed stronger correlations with clinical variables in CHR individuals, demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve correction our analyses found widespread lower MK in CHR that overlapped with lower fractional anisotropy (FA), and both measures were significantly correlated with a decline in functioning and with more severe symptoms. These observations further characterize white matter alterations in the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. The improvement in group differences and stronger correlation with clinical variables suggest that applying MK-curve would be beneficial for the detection and characterization of subtle group differences in other experiments as well.
Beers A, Brown J, Chang K, Hoebel K, Patel J, Ly IK, Tolaney SM, Brastianos P, Rosen B, Gerstner ER, et al. DeepNeuro: An Open-Source Deep Learning Toolbox for Neuroimaging. Neuroinformatics. 2021;19 (1) :127-40.Abstract
Translating deep learning research from theory into clinical practice has unique challenges, specifically in the field of neuroimaging. In this paper, we present DeepNeuro, a Python-based deep learning framework that puts deep neural networks for neuroimaging into practical usage with a minimum of friction during implementation. We show how this framework can be used to design deep learning pipelines that can load and preprocess data, design and train various neural network architectures, and evaluate and visualize the results of trained networks on evaluation data. We present a way of reproducibly packaging data pre- and postprocessing functions common in the neuroimaging community, which facilitates consistent performance of networks across variable users, institutions, and scanners. We show how deep learning pipelines created with DeepNeuro can be concisely packaged into shareable Docker and Singularity containers with user-friendly command-line interfaces.