Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Kubicki M, Shenton ME, Donnell LJO. The Organization of Frontostriatal Brain Wiring in Healthy Subjects Using a Novel Diffusion Imaging Fiber Cluster Analysis. Cereb Cortex. 2021;31(12):5308–18.
To assess normal organization of frontostriatal brain wiring, we analyzed diffusion magnetic resonance imaging (dMRI) scans in 100 young adult healthy subjects (HSs). We identified fiber clusters intersecting the frontal cortex and caudate, a core component of associative striatum, and quantified their degree of deviation from a strictly topographic pattern. Using whole brain dMRI tractography and an automated tract parcellation clustering method, we extracted 17 white matter fiber clusters per hemisphere connecting the frontal cortex and caudate. In a novel approach to quantify the geometric relationship among clusters, we measured intercluster endpoint distances between corresponding cluster pairs in the frontal cortex and caudate. We show first, the overall frontal cortex wiring pattern of the caudate deviates from a strictly topographic organization due to significantly greater convergence in regionally specific clusters; second, these significantly convergent clusters originate in subregions of ventrolateral, dorsolateral, and orbitofrontal prefrontal cortex (PFC); and, third, a similar organization in both hemispheres. Using a novel tractography method, we find PFC-caudate brain wiring in HSs deviates from a strictly topographic organization due to a regionally specific pattern of cluster convergence. We conjecture cortical subregions projecting to the caudate with greater convergence subserve functions that benefit from greater circuit integration.
Diffusion MRI (dMRI) can probe the tissue microstructure but suffers from low signal-to-noise ratio (SNR) whenever high resolution is combined with high diffusion encoding strengths. Low SNR leads to poor precision as well as poor accuracy of the diffusion-weighted signal; the latter is caused by the rectified noise floor and can be observed as a positive bias in magnitude signal. Super-resolution techniques may facilitate a beneficial tradeoff between bias and resolution by allowing acquisition at low spatial resolution and high SNR, whereafter high spatial resolution is recovered by image reconstruction. In this work, we describe a super-resolution reconstruction framework for dMRI and investigate its performance with respect to signal accuracy and precision. Using phantom experiments and numerical simulations, we show that the super-resolution approach improves accuracy by facilitating a more beneficial trade-off between spatial resolution and diffusion encoding strength before the noise floor affects the signal. By contrast, precision is shown to have a less straightforward dependency on acquisition, reconstruction, and intrinsic tissue parameters. Indeed, we find a gain in precision from super-resolution reconstruction is substantial only when some spatial resolution is sacrificed. Finally, we deployed super-resolution reconstruction in a healthy brain for the challenging combination of spherical b-tensor encoding at ultra-high b-values and high spatial resolution-a configuration that produces a unique contrast that emphasizes tissue in which diffusion is restricted in all directions. This demonstration showcased that super-resolution reconstruction enables a vastly superior image contrast compared to conventional imaging, facilitating investigations that would otherwise have prohibitively low SNR, resolution or require non-conventional MRI hardware.
Katsumi Y, Andreano JM, Barrett LF, Dickerson BC, Touroutoglou A. Greater Neural Differentiation in the Ventral Visual Cortex Is Associated with Youthful Memory in Superaging. Cereb Cortex. 2021;31(11):5275–5287.
Superagers are older adults who maintain youthful memory despite advanced age. Previous studies showed that superagers exhibit greater structural and intrinsic functional brain integrity, which contribute to their youthful memory. However, no studies, to date, have examined brain activity as superagers learn and remember novel information. Here, we analyzed functional magnetic resonance imaging data collected from 41 young and 40 older adults while they performed a paired associate visual recognition memory task. Superaging was defined as youthful performance on the long delay free recall of the California Verbal Learning Test. We assessed the fidelity of neural representations as participants encoded and later retrieved a series of word stimuli paired with a face or a scene image. Superagers, like young adults, exhibited more distinct neural representations in the fusiform gyrus and parahippocampal gyrus while viewing visual stimuli belonging to different categories (greater neural differentiation) and more similar category representations between encoding and retrieval (greater neural reinstatement), compared with typical older adults. Greater neural differentiation and reinstatement were associated with superior memory performance in all older adults. Given that the fidelity of cortical sensory processing depends on neural plasticity and is trainable, these mechanisms may be potential biomarkers for future interventions to promote successful aging.
Torrado-Carvajal A, Toschi N, Albrecht DS, Chang K, Akeju O, Kim M, Edwards RR, Zhang Y, Hooker JM, Duggento A, Kalpathy-Cramer J, Napadow V, Loggia ML. Thalamic Neuroinflammation as a Reproducible and Discriminating Signature for Chronic Low Back Pain. Pain. 2021;162(4):1241–49.
Using positron emission tomography, we recently demonstrated elevated brain levels of the 18kDa translocator protein (TSPO), a glial activation marker, in chronic low back pain (cLBP) patients, compared to healthy controls (HC). Here, we first sought to replicate the original findings in an independent cohort (15 cLBP, 37.8±12.5 y/o; 18 HC, 48.2±12.8 y/o). We then trained random forest (RF) machine learning algorithms based on TSPO imaging features combining discovery and replication cohorts (totaling 25 cLBP, 42.4±13.2 y/o; 27 HC, 48.9±12.6 y/o), in order to explore whether image features other than the mean contain meaningful information that might contribute to the discrimination of cLBP patients and HC. Feature importance was ranked usind SHapley Additive exPlanations (SHAP) values, and the classification performance (in terms of AUC values) of classifiers containing only the mean, other features, or all features was compared using the DeLong test. Both region-of-interest (ROI) and voxelwise analyses replicated the original observation of thalamic TSPO signal elevations in cLBP patients compared to HC (p’s<0.05). The RF-based analyses revealed that while the mean is a discriminating feature, other features demonstrate similar level of importance, including the maximum, kurtosis and entropy.Our observations suggest that thalamic neuroinflammatory signal is a reproducible and discriminating feature for cLBP, further supporting a role for glial activation in human chronic low back pain, and the exploration of neuroinflammation as a therapeutic target for chronic pain. This work further shows that TSPO signal contains a richness of information that the simple mean might fail to capture completely.


Wachinger C, Toews M, Langs G, Wells W, Golland P. Keypoint Transfer for Fast Whole-Body Segmentation. IEEE Trans Med Imaging. 2020;39(2):273–82.

We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.

Lasič S, Szczepankiewicz F, Armellina ED, Das A, Kelly C, Plein S, Schneider JE, Nilsson M, Teh I. Motion-compensated b-tensor Encoding for in vivo Cardiac Diffusion-weighted Imaging. NMR Biomed. 2020;33(2):e4213.

Motion is a major confound in diffusion-weighted imaging (DWI) in the body, and it is a common cause of image artefacts. The effects are particularly severe in cardiac applications, due to the nonrigid cyclical deformation of the myocardium. Spin echo-based DWI commonly employs gradient moment-nulling techniques to desensitise the acquisition to velocity and acceleration, ie, nulling gradient moments up to the 2nd order (M2-nulled). However, current M2-nulled DWI scans are limited to encode diffusion along a single direction at a time. We propose a method for designing b-tensors of arbitrary shapes, including planar, spherical, prolate and oblate tensors, while nulling gradient moments up to the 2nd order and beyond. The design strategy comprises initialising the diffusion encoding gradients in two encoding blocks about the refocusing pulse, followed by appropriate scaling and rotation, which further enables nulling undesired effects of concomitant gradients. Proof-of-concept assessment of in vivo mean diffusivity (MD) was performed using linear and spherical tensor encoding (LTE and STE, respectively) in the hearts of five healthy volunteers. The results of the M2-nulled STE showed that (a) the sequence was robust to cardiac motion, and (b) MD was higher than that acquired using standard M2-nulled LTE, where diffusion-weighting was applied in three orthogonal directions, which may be attributed to the presence of restricted diffusion and microscopic diffusion anisotropy. Provided adequate signal-to-noise ratio, STE could significantly shorten estimation of MD compared with the conventional LTE approach. Importantly, our theoretical analysis and the proposed gradient waveform design may be useful in microstructure imaging beyond diffusion tensor imaging where the effects of motion must be suppressed.

Frid P, Drake M, Giese AK, Wasselius J, Schirmer MD, Donahue KL, Cloonan L, Irie R, McIntosh EC, Golland P. Detailed Phenotyping of Posterior vs. Anterior Circulation Ischemic Stroke: A Multi-center MRI Study. J Neurol. 2020;267(3):649–58.

OBJECTIVE:Posterior circulation ischemic stroke (PCiS) constitutes 20-30% of ischemic stroke cases. Detailed information about differences between PCiS and anterior circulation ischemic stroke (ACiS) remains scarce. Such information might guide clinical decision making and prevention strategies. We studied risk factors and ischemic stroke subtypes in PCiS vs. ACiS and lesion location on magnetic resonance imaging (MRI) in PCiS.METHODS:Out of 3,301 MRIs from 12 sites in the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Genetics Network (SiGN), we included 2,381 cases with acute DWI lesions. The definition of ACiS or PCiS was based on lesion location. We compared the groups using Chi-squared and logistic regression.RESULTS:PCiS occurred in 718 (30%) patients and ACiS in 1663 (70%). Diabetes and male sex were more common in PCiS vs. ACiS (diabetes 27% vs. 23%, p < 0.05; male sex 68% vs. 58%, p < 0.001). Both were independently associated with PCiS (diabetes, OR = 1.29; 95% CI 1.04-1.61; male sex, OR = 1.46; 95% CI 1.21-1.78). ACiS more commonly had large artery atherosclerosis (25% vs. 20%, p < 0.01) and cardioembolic mechanisms (17% vs. 11%, p < 0.001) compared to PCiS. Small artery occlusion was more common in PCiS vs. ACiS (20% vs. 14%, p < 0.001). Small artery occlusion accounted for 47% of solitary brainstem infarctions.CONCLUSION:Ischemic stroke subtypes differ between the two phenotypes. Diabetes and male sex have a stronger association with PCiS than ACiS. Definitive MRI-based PCiS diagnosis aids etiological investigation and contributes additional insights into specific risk factors and mechanisms of injury in PCiS.

Chauvin L, Kumar K, Wachinger C, Vangel M, de Guise J, Desrosiers C, Wells W, Toews M. Neuroimage Signature from Salient Keypoints is Highly Specific to Individuals and Shared by Close Relatives. Neuroimage. 2020;204:116208.

Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.

Xie G, Zhang F, Leung L, Mooney MA, Epprecht L, Norton I, Rathi Y, Kikinis R, Al-Mefty O, Makris N, Golby AJ, Donnell LJO. Anatomical Assessment of Trigeminal Nerve Tractography Using Diffusion MRI: A Comparison of Acquisition b-Values and Single- and Multi-Fiber Tracking Strategies. Neuroimage Clin. 2020;25:102160.

BACKGROUND: The trigeminal nerve (TGN) is the largest cranial nerve and can be involved in multiple inflammatory, compressive, ischemic or other pathologies. Currently, imaging-based approaches to identify the TGN mostly rely on T2-weighted magnetic resonance imaging (MRI), which provides localization of the cisternal portion of the TGN where the contrast between nerve and cerebrospinal fluid (CSF) is high enough to allow differentiation. The course of the TGN within the brainstem as well as anterior to the cisternal portion, however, is more difficult to display on traditional imaging sequences. An advanced imaging technique, diffusion MRI (dMRI), enables tracking of the trajectory of TGN fibers and has the potential to visualize anatomical regions of the TGN not seen on T2-weighted imaging. This may allow a more comprehensive assessment of the nerve in the context of pathology. To date, most work in TGN tracking has used clinical dMRI acquisitions with a b-value of 1000 s/mm2 and conventional diffusion tensor MRI (DTI) tractography methods. Though higher b-value acquisitions and multi-tensor tractography methods are known to be beneficial for tracking brain white matter fiber tracts, there have been no studies conducted to evaluate the performance of these advanced approaches on nerve tracking of the TGN, in particular on tracking different anatomical regions of the TGN. OBJECTIVE: We compare TGN tracking performance using dMRI data with different b-values, in combination with both single- and multi-tensor tractography methods. Our goal is to assess the advantages and limitations of these different strategies for identifying the anatomical regions of the TGN. METHODS: We proposed seven anatomical rating criteria including true and false positive structures, and we performed an expert rating study of over 1000 TGN visualizations, as follows. We tracked the TGN using high-quality dMRI data from 100 healthy adult subjects from the Human Connectome Project (HCP). TGN tracking performance was compared across dMRI acquisitions with b = 1000 s/mm2, b = 2000 s/mm2 and b = 3000 s/mm2, using single-tensor (1T) and two-tensor (2T) unscented Kalman filter (UKF) tractography. This resulted in a total of six tracking strategies. The TGN was identified using an anatomical region-of-interest (ROI) selection approach. First, in a subset of the dataset we identified ROIs that provided good TGN tracking performance across all tracking strategies. Using these ROIs, the TGN was then tracked in all subjects using the six tracking strategies. An expert rater (GX) visually assessed and scored each TGN based on seven anatomical judgment criteria. These criteria included the presence of multiple expected anatomical segments of the TGN (true positive structures), specifically branch-like structures, cisternal portion, mesencephalic trigeminal tract, and spinal cord tract of the TGN. False positive criteria included the presence of any fibers entering the temporal lobe, the inferior cerebellar peduncle, or the middle cerebellar peduncle. Expert rating scores were analyzed to compare TGN tracking performance across the six tracking strategies. Intra- and inter-rater validation was performed to assess the reliability of the expert TGN rating result. RESULTS: The TGN was selected using two anatomical ROIs (Meckel’s Cave and cisternal portion of the TGN). The two-tensor tractography method had significantly better performance on identifying true positive structures, while generating more false positive streamlines in comparison to the single-tensor tractography method. TGN tracking performance was significantly different across the three b-values for almost all structures studied. Tracking performance was reported in terms of the percentage of subjects achieving each anatomical rating criterion. Tracking of the cisternal portion and branching structure of the TGN was generally successful, with the highest performance of over 98% using two-tensor tractography and b = 1000 or b = 2000. However, tracking the smaller mesencephalic and spinal cord tracts of the TGN was quite challenging (highest performance of 37.5% and 57.07%, using two-tensor tractography with b = 1000 and b = 2000, respectively). False positive connections to the temporal lobe (over 38% of subjects for all strategies) and cerebellar peduncles (100% of subjects for all strategies) were prevalent. High joint probability of agreement was obtained in the inter-rater (on average 83%) and intra-rater validation (on average 90%), showing a highly reliable expert rating result. CONCLUSIONS: Overall, the results of the study suggest that researchers and clinicians may benefit from tailoring their acquisition and tracking methodology to the specific anatomical portion of the TGN that is of the greatest interest. For example, tracking of branching structures and TGN-T2 overlap can be best achieved with a two-tensor model and an acquisition using b = 1000 or b = 2000. In general, b = 1000 and b = 2000 acquisitions provided the best-rated tracking results. Further research is needed to improve both sensitivity and specificity of the depiction of the TGN anatomy using dMRI.