Publications by Year: 2020

Joseph M Gullett, Andrew O'Shea, Damon G Lamb, Eric C Porges, Deirdre M O'Shea, Ofer Pasternak, Ronald A Cohen, and Adam J Woods. 10/2020. “The Association of White Matter Free Water With Cognition in Older Adults.” Neuroimage, 219, Pp. 117040.Abstract
BACKGROUND: Extracellular free water within cerebral white matter tissue has been shown to increase with age and pathology, yet the cognitive consequences of free water in typical aging prior to the development of neurodegenerative disease remains unclear. Understanding the contribution of free water to cognitive function in older adults may provide important insight into the neural mechanisms of the cognitive aging process. METHODS: A diffusion-weighted MRI measure of extracellular free water as well as a commonly used diffusion MRI metric (fractional anisotropy) along nine bilateral white matter pathways were examined for their relationship with cognitive function assessed by the NIH Toolbox Cognitive Battery in 47 older adults (mean age ​= ​74.4 years, SD ​= ​5.4 years, range ​= ​65-85 years). Probabilistic tractography at the 99th percentile level of probability (Tracts Constrained by Underlying Anatomy; TRACULA) was utilized to produce the pathways on which microstructural characteristics were overlaid and examined for their contribution to cognitive function independent of age, education, and gender. RESULTS: When examining the 99th percentile probability core white matter pathway derived from TRACULA, poorer fluid cognitive ability was related to higher mean free water values across the angular and cingulum bundles of the cingulate gyrus, as well as the corticospinal tract and the superior longitudinal fasciculus. There was no relationship between cognition and mean FA or free water-adjusted FA across the 99th percentile core white matter pathway. Crystallized cognitive ability was not associated with any of the diffusion measures. When examining cognitive domains comprising the NIH Toolbox Fluid Cognition index relationships with these white matter pathways, mean free water demonstrated strong hemispheric and functional specificity for cognitive performance, whereas mean FA was not related to age or cognition across the 99th percentile pathway. CONCLUSIONS: Extracellular free water within white matter appears to increase with normal aging, and higher values are associated with significantly lower fluid but not crystallized cognitive functions. When using TRACULA to estimate the core of a white matter pathway, a higher degree of free water appears to be highly specific to the pathways associated with memory, working memory, and speeded decision-making performance, whereas no such relationship existed with FA. These data suggest that free water may play an important role in the cognitive aging process, and may serve as a stronger and more specific indicator of early cognitive decline than traditional diffusion MRI measures, such as FA.
Björn Lampinen, Filip Szczepankiewicz, Johan Mårtensson, Danielle van Westen, Oskar Hansson, Carl-Fredrik Westin, and Markus Nilsson. 9/2020. “Towards Unconstrained Compartment Modeling in White Matter Using Diffusion-Relaxation MRI with Tensor-Valued Diffusion Encoding.” Magn Reson Med, 84, 3, Pp. 1605-23.Abstract
PURPOSE: To optimize diffusion-relaxation MRI with tensor-valued diffusion encoding for precise estimation of compartment-specific fractions, diffusivities, and T values within a two-compartment model of white matter, and to explore the approach in vivo. METHODS: Sampling protocols featuring different b-values (b), b-tensor shapes (b ), and echo times (TE) were optimized using Cramér-Rao lower bounds (CRLB). Whole-brain data were acquired in children, adults, and elderly with white matter lesions. Compartment fractions, diffusivities, and T values were estimated in a model featuring two microstructural compartments represented by a "stick" and a "zeppelin." RESULTS: Precise parameter estimates were enabled by sampling protocols featuring seven or more "shells" with unique b/b /TE-combinations. Acquisition times were approximately 15 minutes. In white matter of adults, the "stick" compartment had a fraction of approximately 0.5 and, compared with the "zeppelin" compartment, featured lower isotropic diffusivities (0.6 vs. 1.3 μm /ms) but higher T values (85 vs. 65 ms). Children featured lower "stick" fractions (0.4). White matter lesions exhibited high "zeppelin" isotropic diffusivities (1.7 μm /ms) and T values (150 ms). CONCLUSIONS: Diffusion-relaxation MRI with tensor-valued diffusion encoding expands the set of microstructure parameters that can be precisely estimated and therefore increases their specificity to biological quantities.
Kyriakos Dalamagkas, Magdalini Tsintou, Yogesh Rathi, Lauren J O'Donnell, Ofer Pasternak, Xue Gong, Anne Zhu, Peter Savadjiev, George M Papadimitriou, Marek Kubicki, Edward H Yeterian, and Nikos Makris. 6/2020. “Individual Variations of the Human Corticospinal Tract and Its Hand-Related Motor Fibers Using Diffusion MRI Tractography.” Brain Imaging Behav, 14, 3, Pp. 696-714.Abstract
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Ting Xu, Karl-Heinz Nenning, Ernst Schwartz, Seok-Jun Hong, Joshua T Vogelstein, Alexandros Goulas, Damien A Fair, Charles E Schroeder, Daniel S Margulies, Jonny Smallwood, Michael P Milham, and Georg Langs. 12/2020. “Cross-Species Functional Alignment Reveals Evolutionary Hierarchy Within the Connectome.” Neuroimage, 223, Pp. 117346.Abstract
Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.
Luca Canalini, Jan Klein, Dorothea Miller, and Ron Kikinis. 12/2020. “Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity in Neurosurgical Procedures.” Int J Comput Assist Radiol Surg, 15, 13, Pp. 1963-74.Abstract
PURPOSE: Neurosurgeons can have a better understanding of surgical procedures by comparing ultrasound images obtained at different phases of the tumor resection. However, establishing a direct mapping between subsequent acquisitions is challenging due to the anatomical changes happening during surgery. We propose here a method to improve the registration of ultrasound volumes, by excluding the resection cavity from the registration process. METHODS: The first step of our approach includes the automatic segmentation of the resection cavities in ultrasound volumes, acquired during and after resection. We used a convolution neural network inspired by the 3D U-Net. Then, subsequent ultrasound volumes are registered by excluding the contribution of resection cavity. RESULTS: Regarding the segmentation of the resection cavity, the proposed method achieved a mean DICE index of 0.84 on 27 volumes. Concerning the registration of the subsequent ultrasound acquisitions, we reduced the mTRE of the volumes acquired before and during resection from 3.49 to 1.22 mm. For the set of volumes acquired before and after removal, the mTRE improved from 3.55 to 1.21 mm. CONCLUSIONS: We proposed an innovative registration algorithm to compensate the brain shift affecting ultrasound volumes obtained at subsequent phases of neurosurgical procedures. To the best of our knowledge, our method is the first to exclude automatically segmented resection cavities in the registration of ultrasound volumes in neurosurgery.
Katharina V Hoebel, Jay B Patel, Andrew L Beers, Ken Chang, Praveer Singh, James M Brown, Marco C Pinho, Tracy T Batchelor, Elizabeth R Gerstner, Bruce R Rosen, and Jayashree Kalpathy-Cramer. 12/2020. “Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma.” Radiol Artif Intell, 3, 1, Pp. e190199.Abstract
Purpose: To determine the influence of preprocessing on the repeatability and redundancy of radiomics features extracted using a popular open-source radiomics software package in a scan-rescan glioblastoma MRI study. Materials and Methods: In this study, a secondary analysis of T2-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted postcontrast images from 48 patients (mean age, 56 years [range, 22-77 years]) diagnosed with glioblastoma were included from two prospective studies ( NCT00662506 [2009-2011] and NCT00756106 [2008-2011]). All patients underwent two baseline scans 2-6 days apart using identical imaging protocols on 3-T MRI systems. No treatment occurred between scan and rescan, and tumors were essentially unchanged visually. Radiomic features were extracted by using PyRadiomics under varying conditions, including normalization strategies and intensity quantization. Subsequently, intraclass correlation coefficients were determined between feature values of the scan and rescan. Results: Shape features showed a higher repeatability than intensity (adjusted < .001) and texture features (adjusted < .001) for both T2-weighted FLAIR and T1-weighted postcontrast images. Normalization improved the overlap between the region of interest intensity histograms of scan and rescan (adjusted < .001 for both T2-weighted FLAIR and T1-weighted postcontrast images), except in scans where brain extraction fails. As such, normalization significantly improves the repeatability of intensity features from T2-weighted FLAIR scans (adjusted = .003 [ score normalization] and adjusted = .002 [histogram matching]). The use of a relative intensity binning strategy as opposed to default absolute intensity binning reduces correlation between gray-level co-occurrence matrix features after normalization. Conclusion: Both normalization and intensity quantization have an effect on the level of repeatability and redundancy of features, emphasizing the importance of both accurate reporting of methodology in radiomics articles and understanding the limitations of choices made in pipeline design. © RSNA, 2020See also the commentary by Tiwari and Verma in this issue.
Yang Gao, Xiong Xiao, Bangcheng Han, Guilin Li, Xiaolin Ning, Defeng Wang, Weidong Cai, Ron Kikinis, Shlomo Berkovsky, Antonio Di Ieva, Liwei Zhang, Nan Ji, and Sidong Liu. 11/2020. “Deep Learning Methodology for Differentiating Glioma Recurrence From Radiation Necrosis Using Multimodal Magnetic Resonance Imaging: Algorithm Development and Validation.” JMIR Med Inform, 8, 11, Pp. e19805.Abstract
BACKGROUND: The radiological differential diagnosis between tumor recurrence and radiation-induced necrosis (ie, pseudoprogression) is of paramount importance in the management of glioma patients. OBJECTIVE: This research aims to develop a deep learning methodology for automated differentiation of tumor recurrence from radiation necrosis based on routine magnetic resonance imaging (MRI) scans. METHODS: In this retrospective study, 146 patients who underwent radiation therapy after glioma resection and presented with suspected recurrent lesions at the follow-up MRI examination were selected for analysis. Routine MRI scans were acquired from each patient, including T1, T2, and gadolinium-contrast-enhanced T1 sequences. Of those cases, 96 (65.8%) were confirmed as glioma recurrence on postsurgical pathological examination, while 50 (34.2%) were diagnosed as necrosis. A light-weighted deep neural network (DNN) (ie, efficient radionecrosis neural network [ERN-Net]) was proposed to learn radiological features of gliomas and necrosis from MRI scans. Sensitivity, specificity, accuracy, and area under the curve (AUC) were used to evaluate performance of the model in both image-wise and subject-wise classifications. Preoperative diagnostic performance of the model was also compared to that of the state-of-the-art DNN models and five experienced neurosurgeons. RESULTS: DNN models based on multimodal MRI outperformed single-modal models. ERN-Net achieved the highest AUC in both image-wise (0.915) and subject-wise (0.958) classification tasks. The evaluated DNN models achieved an average sensitivity of 0.947 (SD 0.033), specificity of 0.817 (SD 0.075), and accuracy of 0.903 (SD 0.026), which were significantly better than the tested neurosurgeons (P=.02 in sensitivity and P<.001 in specificity and accuracy). CONCLUSIONS: Deep learning offers a useful computational tool for the differential diagnosis between recurrent gliomas and necrosis. The proposed ERN-Net model, a simple and effective DNN model, achieved excellent performance on routine MRI scans and showed a high clinical applicability.
Andrey Fedorov, Matthew Hancock, David Clunie, Mathias Brochhausen, Jonathan Bona, Justin Kirby, John Freymann, Steve Pieper, Hugo JWL Aerts, Ron Kikinis, and Fred Prior. 11/2020. “DICOM Re-encoding of Volumetrically Annotated Lung Imaging Database Consortium (LIDC) Nodules.” Med Phys, 47, 11, Pp. 5953-65.Abstract
PURPOSE: The dataset contains annotations for lung nodules collected by the Lung Imaging Data Consortium and Image Database Resource Initiative (LIDC) stored as standard DICOM objects. The annotations accompany a collection of computed tomography (CT) scans for over 1000 subjects annotated by multiple expert readers, and correspond to "nodules ≥ 3 mm", defined as any lesion considered to be a nodule with greatest in-plane dimension in the range 3-30 mm regardless of presumed histology. The present dataset aims to simplify reuse of the data with the readily available tools, and is targeted towards researchers interested in the analysis of lung CT images. ACQUISITION AND VALIDATION METHODS: Open source tools were utilized to parse the project-specific XML representation of LIDC-IDRI annotations and save the result as standard DICOM objects. Validation procedures focused on establishing compliance of the resulting objects with the standard, consistency of the data between the DICOM and project-specific representation, and evaluating interoperability with the existing tools. DATA FORMAT AND USAGE NOTES: The dataset utilizes DICOM Segmentation objects for storing annotations of the lung nodules, and DICOM Structured Reporting objects for communicating qualitative evaluations (nine attributes) and quantitative measurements (three attributes) associated with the nodules. The total of 875 subjects contain 6859 nodule annotations. Clustering of the neighboring annotations resulted in 2651 distinct nodules. The data are available in TCIA at POTENTIAL APPLICATIONS: The standardized dataset maintains the content of the original contribution of the LIDC-IDRI consortium, and should be helpful in developing automated tools for characterization of lung lesions and image phenotyping. In addition to those properties, the representation of the present dataset makes it more FAIR (Findable, Accessible, Interoperable, Reusable) for the research community, and enables its integration with other standardized data collections.
Fan Zhang, Guoqiang Xie, Laura Leung, Michael A Mooney, Lorenz Epprecht, Isaiah Norton, Yogesh Rathi, Ron Kikinis, Ossama Al-Mefty, Nikos Makris, Alexandra J Golby, and Lauren J O'Donnell. 10/2020. “Creation of a Novel Trigeminal Tractography Atlas for Automated Trigeminal Nerve Identification.” Neuroimage, 220, Pp. 117063.Abstract
Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identification of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability, time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50 subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual ROI placement for TGN selection and hence yields a higher successful TGN identification rate.
Karl-Heinz Nenning, Julia Furtner, Barbara Kiesel, Ernst Schwartz, Thomas Roetzer, Nikolaus Fortelny, Christoph Bock, Anna Grisold, Martha Marko, Fritz Leutmezer, Hesheng Liu, Polina Golland, Sophia Stoecklein, Johannes A Hainfellner, Gregor Kasprian, Daniela Prayer, Christine Marosi, Georg Widhalm, Adelheid Woehrer, and Georg Langs. 10/2020. “Distributed Changes of the Functional Connectome in Patients with Glioblastoma.” Sci Rep, 10, 1, Pp. 18312.Abstract
Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.
Geeticka Chauhan, Ruizhi Liao, William Wells, Jacob Andreas, Xin Wang, Seth Berkowitz, Steven Horng, Peter Szolovits, and Polina Golland. 10/2020. “Joint Modeling of Chest Radiographs and Radiology Reports for Pulmonary Edema Assessment.” Med Image Comput Comput Assist Interv, 12262, Pp. 529-39.Abstract
We propose and demonstrate a novel machine learning algorithm that assesses pulmonary edema severity from chest radiographs. While large publicly available datasets of chest radiographs and free-text radiology reports exist, only limited numerical edema severity labels can be extracted from radiology reports. This is a significant challenge in learning such models for image classification. To take advantage of the rich information present in the radiology reports, we develop a neural network model that is trained on both images and free-text to assess pulmonary edema severity from chest radiographs at inference time. Our experimental results suggest that the joint image-text representation learning improves the performance of pulmonary edema assessment compared to a supervised model trained on images only. We also show the use of the text for explaining the image classification by the joint model. To the best of our knowledge, our approach is the first to leverage free-text radiology reports for improving the image model performance in this application. Our code is available at:
Fiona M Fennessy, Andriy Fedorov, Mark G Vangel, Robert V. Mulkern, Maria Tretiakova, Rosina T Lis, Clare Tempany, and Mary-Ellen Taplin. 10/2020. “Multiparametric MRI as a Biomarker of Response to Neoadjuvant Therapy for Localized Prostate Cancer-A Pilot Study.” Acad Radiol, 27, 10, Pp. 1432-9.Abstract
RATIONALE AND OBJECTIVES: To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS: This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman's rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS: At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10 vs. 1277 ± 213 × 10 mm/sec, p = 0.0005; K: 0.346 ± 0.16 vs. 0.144 ± 0.06 min, p = 0.002; AUC: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI K (0.346 ± 0.16 to 0.188 ± 0.08 min; p = 0.02) and AUC (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION: Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.
Clinton J Wang, Natalia S Rost, and Polina Golland. 10/2020. “Spatial-Intensity Transform GANs for High Fidelity Medical Image-to-Image Translation.” Med Image Comput Comput Assist Interv, 12262, Pp. 749-59.Abstract
Despite recent progress in image-to-image translation, it remains challenging to apply such techniques to clinical quality medical images. We develop a novel parameterization of conditional generative adversarial networks that achieves high image fidelity when trained to transform MRIs conditioned on a patient's age and disease severity. The spatial-intensity transform generative adversarial network (SIT-GAN) constrains the generator to a smooth spatial transform composed with sparse intensity changes. This technique improves image quality and robustness to artifacts, and generalizes to different scanners. We demonstrate SIT-GAN on a large clinical image dataset of stroke patients, where it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. Additionally, SIT-GAN provides a disentangled view of the variation in shape and appearance across subjects.
Daniel Haehn, Loraine Franke, Fan Zhang, Suheyla Cetin-Karayumak, Steve Pieper, Lauren J O'Donnell, and Yogesh Rathi. 10/2020. “TRAKO: Efficient Transmission of Tractography Data for Visualization.” Med Image Comput Comput Assist Interv, 12267, Pp. 322-32.Abstract
Fiber tracking produces large tractography datasets that are tens of gigabytes in size consisting of millions of streamlines. Such vast amounts of data require formats that allow for efficient storage, transfer, and visualization. We present TRAKO, a new data format based on the Graphics Layer Transmission Format (glTF) that enables immediate graphical and hardware-accelerated processing. We integrate a state-of-the-art compression technique for vertices, streamlines, and attached scalar and property data. We then compare TRAKO to existing tractography storage methods and provide a detailed evaluation on eight datasets. TRAKO can achieve data reductions of over 28x without loss of statistical significance when used to replicate analysis from previously published studies.
Richard Jarrett Rushmore, Peter Wilson-Braun, George Papadimitriou, Isaac Ng, Yogesh Rathi, Fan Zhang, Lauren Jean O'Donnell, Marek Kubicki, Sylvain Bouix, Edward Yeterian, Jean-Jacques Lemaire, Evan Calabrese, Allan G Johnson, Ron Kikinis, and Nikos Makris. 9/2020. “3D Exploration of the Brainstem in 50-Micron Resolution MRI.” Front Neuroanat, 14, Pp. 40.Abstract
The brainstem, a structure of vital importance in mammals, is currently becoming a principal focus in cognitive, affective, and clinical neuroscience. Midbrain, pontine and medullary structures serve as the conduit for signals between the forebrain and spinal cord, are the epicenter of cranial nerve-circuits and systems, and subserve such integrative functions as consciousness, emotional processing, pain, and motivation. In this study, we parcellated the nuclear masses and the principal fiber pathways that were visible in a high-resolution T2-weighted MRI dataset of 50-micron isotropic voxels of a postmortem human brainstem. Based on this analysis, we generated a detailed map of the human brainstem. To assess the validity of our maps, we compared our observations with histological maps of traditional human brainstem atlases. Given the unique capability of MRI-based morphometric analysis in generating and preserving the morphology of 3D objects from individual 2D sections, we reconstructed the motor, sensory and integrative neural systems of the brainstem and rendered them in 3D representations. We anticipate the utilization of these maps by the neuroimaging community for applications in basic neuroscience as well as in neurology, psychiatry, and neurosurgery, due to their versatile computational nature in 2D and 3D representations in a publicly available capacity.
Björn Lampinen, Ariadne Zampeli, Isabella M Björkman-Burtscher, Filip Szczepankiewicz, Kristina Källén, Maria Compagno Strandberg, and Markus Nilsson. 8/15/2020. “Tensor-Valued Diffusion MRI Differentiates Cortex and White Matter in Malformations of Cortical Development Associated With Epilepsy.” Epilepsia, 61, 8, Pp. 1701-13.Abstract
OBJECTIVE: Delineation of malformations of cortical development (MCD) is central in presurgical evaluation of drug-resistant epilepsy. Delineation using magnetic resonance imaging (MRI) can be ambiguous, however, because the conventional T - and T -weighted contrasts depend strongly on myelin for differentiation of cortical tissue and white matter. Variations in myelin content within both cortex and white matter may cause MCD findings on MRI to change size, become undetectable, or disagree with histopathology. The novel tensor-valued diffusion MRI (dMRI) technique maps microscopic diffusion anisotropy, which is sensitive to axons rather than myelin. This work investigated whether tensor-valued dMRI may improve differentiation of cortex and white matter in the delineation of MCD. METHODS: Tensor-valued dMRI was performed on a 7 T MRI scanner in 13 MCD patients (age = 32 ± 13 years) featuring periventricular heterotopia, subcortical heterotopia, focal cortical dysplasia, and polymicrogyria. Data analysis yielded maps of microscopic anisotropy that were compared with T -weighted and T -fluid-attenuated inversion recovery images and with the fractional anisotropy from diffusion tensor imaging. RESULTS: Maps of microscopic anisotropy revealed large white matter-like regions within MCD that were uniformly cortex-like in the conventional MRI contrasts. These regions were seen particularly in the deep white matter parts of subcortical heterotopias and near the gray-white boundaries of focal cortical dysplasias and polymicrogyrias. SIGNIFICANCE: By being sensitive to axons rather than myelin, mapping of microscopic anisotropy may yield a more robust differentiation of cortex and white matter and improve MCD delineation in presurgical evaluation of epilepsy.
Nityanand Miskin, Prashin Unadkat, Michael E Carlton, Alexandra J Golby, Geoffrey S Young, and Raymond Y Huang. 8/2020. “Frequency and Evolution of New Postoperative Enhancement on 3 Tesla Intraoperative and Early Postoperative Magnetic Resonance Imaging.” Neurosurgery, 87, 2, Pp. 238-46.Abstract
BACKGROUND: Intraoperative magnetic resonance imaging (IO-MRI) provides real-time assessment of extent of resection of brain tumor. Development of new enhancement during IO-MRI can confound interpretation of residual enhancing tumor, although the incidence of this finding is unknown. OBJECTIVE: To determine the frequency of new enhancement during brain tumor resection on intraoperative 3 Tesla (3T) MRI. To optimize the postoperative imaging window after brain tumor resection using 1.5 and 3T MRI. METHODS: We retrospectively evaluated 64 IO-MRI performed for patients with enhancing brain lesions referred for biopsy or resection as well as a subset with an early postoperative MRI (EP-MRI) within 72 h of surgery (N = 42), and a subset with a late postoperative MRI (LP-MRI) performed between 120 h and 8 wk postsurgery (N = 34). Three radiologists assessed for new enhancement on IO-MRI, and change in enhancement on available EP-MRI and LP-MRI. Consensus was determined by majority response. Inter-rater agreement was assessed using percentage agreement. RESULTS: A total of 10 out of 64 (16%) of the IO-MRI demonstrated new enhancement. Seven of 10 patients with available EP-MRI demonstrated decreased/resolved enhancement. One out of 42 (2%) of the EP-MRI demonstrated new enhancement, which decreased on LP-MRI. Agreement was 74% for the assessment of new enhancement on IO-MRI and 81% for the assessment of new enhancement on the EP-MRI. CONCLUSION: New enhancement occurs in intraoperative 3T MRI in 16% of patients after brain tumor resection, which decreases or resolves on subsequent MRI within 72 h of surgery. Our findings indicate the opportunity for further study to optimize the postoperative imaging window.
Chieh-En J Tseng, Tonya M Gilbert, Mary C Catanese, Baileigh G Hightower, Amy T Peters, Anjali J Parmar, Minhae Kim, Changning Wang, Joshua L Roffman, Hannah E Brown, Roy H Perlis, Nicole R Zürcher, and Jacob M Hooker. 7/2020. “In Vivo Human Brain Expression of Histone Deacetylases in Bipolar Disorder.” Transl Psychiatry, 10, 1, Pp. 224.Abstract
The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [C]Martinostat. Lower [C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.
James J Levitt, Paul G Nestor, Marek Kubicki, Amanda E Lyall, Fan Zhang, Tammy Riklin-Raviv, Lauren J O Donnell, Robert W McCarley, Martha E Shenton, and Yogesh Rathi. 7/2020. “Miswiring of Frontostriatal Projections in Schizophrenia.” Schizophr Bull, 46, 4, Pp. 990-8.Abstract
We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P  = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P  = .04) with a left (P  = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P  = .045) driven by differences in left hemisphere limbic (P  = .007) and associative (P  = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.
Fan Zhang, Suheyla Cetin Karayumak, Nico Hoffmann, Yogesh Rathi, Alexandra J Golby, and Lauren J O'Donnell. 6/2020. “Deep White Matter Analysis (DeepWMA): Fast and Consistent Tractography Segmentation.” Med Image Anal, 65, Pp. 101761.Abstract
White matter tract segmentation, i.e. identifying tractography fibers (streamline trajectories) belonging to anatomically meaningful fiber tracts, is an essential step to enable tract quantification and visualization. In this study, we present a deep learning tractography segmentation method (DeepWMA) that allows fast and consistent identification of 54 major deep white matter fiber tracts from the whole brain. We create a large-scale training tractography dataset of 1 million labeled fiber samples, and we propose a novel 2D multi-channel feature descriptor (FiberMap) that encodes spatial coordinates of points along each fiber. We learn a convolutional neural network (CNN) fiber classification model based on FiberMap and obtain a high fiber classification accuracy of 90.99% on the training tractography data with ground truth fiber labels. Then, the method is evaluated on a test dataset of 597 diffusion MRI scans from six independently acquired populations across genders, the lifespan (1 day - 82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). We perform comparisons with two state-of-the-art tract segmentation methods. Experimental results show that our method obtains a highly consistent tract segmentation result, where on average over 99% of the fiber tracts are successfully identified across all subjects under study, most importantly, including neonates and patients with space-occupying brain tumors. We also demonstrate good generalization of the method to tractography data from multiple different fiber tracking methods. The proposed method leverages deep learning techniques and provides a fast and efficient tool for brain white matter segmentation in large diffusion MRI tractography datasets.