Herberthson M, Yolcu C, Knutsson H, Westin C-F, Özarslan E. Orientationally-averaged Diffusion-attenuated Magnetic Resonance Signal for Locally-anisotropic Diffusion. Sci Rep. 2019;9 (1) :4899.Abstract
Diffusion-attenuated MR signal for heterogeneous media has been represented as a sum of signals from anisotropic Gaussian sub-domains to the extent that this approximation is permissible. Any effect of macroscopic (global or ensemble) anisotropy in the signal can be removed by averaging the signal values obtained by differently oriented experimental schemes. The resulting average signal is identical to what one would get if the micro-domains are isotropically (e.g., randomly) distributed with respect to orientation, which is the case for "powdered" specimens. We provide exact expressions for the orientationally-averaged signal obtained via general gradient waveforms when the microdomains are characterized by a general diffusion tensor possibly featuring three distinct eigenvalues. This extends earlier results which covered only axisymmetric diffusion as well as measurement tensors. Our results are expected to be useful in not only multidimensional diffusion MR but also solid-state NMR spectroscopy due to the mathematical similarities in the two fields.
Zhang F, Wu Y, Norton I, Rathi Y, Golby AJ, O'Donnell LJ. Test-retest Reproducibility of White Matter Parcellation using Diffusion MRI Tractography Fiber Clustering. Hum Brain Mapp. 2019;40 (10) :3041-57.Abstract
There are two popular approaches for automated white matter parcellation using diffusion MRI tractography, including fiber clustering strategies that group white matter fibers according to their geometric trajectories and cortical-parcellation-based strategies that focus on the structural connectivity among different brain regions of interest. While multiple studies have assessed test-retest reproducibility of automated white matter parcellations using cortical-parcellation-based strategies, there are no existing studies of test-retest reproducibility of fiber clustering parcellation. In this work, we perform what we believe is the first study of fiber clustering white matter parcellation test-retest reproducibility. The assessment is performed on three test-retest diffusion MRI datasets including a total of 255 subjects across genders, a broad age range (5-82 years), health conditions (autism, Parkinson's disease and healthy subjects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is conducted for a fiber clustering method that leverages an anatomically curated fiber clustering white matter atlas, with comparison to a popular cortical-parcellation-based method. The two methods are compared for the two main white matter parcellation applications of dividing the entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying particular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test-retest reproducibility is measured using both geometric and diffusion features, including volumetric overlap (wDice) and relative difference of fractional anisotropy. Our experimental results in general indicate that the fiber clustering method produced more reproducible white matter parcellations than the cortical-parcellation-based method.
Nguyen AV, Lasso A, Nam HH, Faerber J, Aly AH, Pouch AM, Scanlan AB, McGowan FX, Mercer-Rosa L, Cohen MS, et al. Dynamic Three-Dimensional Geometry of the Tricuspid Valve Annulus in Hypoplastic Left Heart Syndrome with a Fontan Circulation. J Am Soc Echocardiogr. 2019;32 (5) :655-66.Abstract
BACKGROUND: Tricuspid regurgitation (TR) is a significant contributor to morbidity and mortality in patients with hypoplastic left heart syndrome. The goal of this study was to characterize the dynamic annular motion of the tricuspid valve in patients with HLHS with a Fontan circulation and assess the relation to tricuspid valve function. METHODS: Tricuspid annuli of 48 patients with HLHS with a Fontan circulation were modeled at end-diastole, mid-systole, end-systole, and mid-diastole using transthoracic three-dimensional echocardiography and custom code in 3D Slicer. The angle of the anterior papillary muscle (APM) relative to the annular plane in each systolic phase was also measured. RESULTS: Imaging was performed 5.0 years (interquartile range, 2-11 years) after Fontan operation. The tricuspid annulus varies in shape significantly throughout the cardiac cycle, changing in sphericity (P < .001) but not in annular height or bending angle. In univariate modeling, patients with significant TR had larger changes in septolateral diameter, lateral quadrant area, and posterior quadrant area (P < .05 for all) as well as lower (more laterally directed) APM angles (P < .001) than patients with mild or less TR. In multivariate modeling, a 1 mm/(body surface area) increase in the maximum change in septolateral diameter was associated with a 1.7-fold increase in having moderate or greater TR, while a 10° decrease in APM angle at mid-systole was associated with an almost 2.5-fold increase in moderate or greater TR (P ≤ .01 for all). CONCLUSIONS: The tricuspid annulus in patients with HLHS with a Fontan circulation changes in shape significantly throughout the cardiac cycle but remains relatively planar. Increased change in septolateral diameter and decreased APM angle are strongly associated with the presence of TR. These findings may inform annuloplasty methods and subvalvular interventions in these complex patients.
Valera EM, Cao A, Pasternak O, Shenton ME, Kubicki M, Makris N, Adra N. White Matter Correlates of Mild Traumatic Brain Injuries in Women Subjected to Intimate-Partner Violence: A Preliminary Study. J Neurotrauma. 2019;36 (5) :661-8.Abstract
A large proportion (range of 44-75%) of women who experience intimate-partner violence (IPV) have been shown to sustain repetitive mild traumatic brain injuries (mTBIs) from their abusers. Further, despite requests for research on TBI-related health outcomes, there are currently only a handful of studies addressing this issue and only one prior imaging study that has investigated the neural correlates of IPV-related TBIs. In response, we examined specific regions of white matter microstructure in 20 women with histories of IPV. Subjects were imaged on a 3-Tesla Siemens Magnetom TrioTim scanner using diffusion magnetic resonance imaging. We investigated the association between a score reflecting number and recency of IPV-related mTBIs and fractional anisotropy (FA) in the posterior and superior corona radiata as well as the posterior thalamic radiation, brain regions shown previously to be involved in mTBI. We also investigated the association between several cognitive measures, namely learning, memory, and cognitive flexibility, and FA in the white matter regions of interest. We report a negative correlation between the brain injury score and FA in regions of the posterior and superior corona radiata. We failed to find an association between our cognitive measures and FA in these regions, but the interpretation of these results remains inconclusive due to possible power issues. Overall, these data build upon the small but growing literature demonstrating potential consequences of mTBIs for women experiencing IPV, and further underscore the urgent need for larger and more comprehensive studies in this area.
Stojanovski S, Felsky D, Viviano JD, Shahab S, Bangali R, Burton CL, Devenyi GA, O'Donnell LJ, Szatmari P, Chakravarty MM, et al. Polygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury. Biol Psychiatry. 2019;85 (5) :408-16.Abstract
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a major sequela of traumatic brain injury (TBI) in youths. The objective of this study was to examine whether ADHD symptoms are differentially associated with genetic risk and brain structure in youths with and without a history of TBI. METHODS: Medical history, ADHD symptoms, genetic data, and neuroimaging data were obtained from a community sample of youths. ADHD symptom severity was compared between those with and without TBI (TBI n = 418, no TBI n = 3193). The relationship of TBI history, genetic vulnerability, brain structure, and ADHD symptoms was examined by assessing 1) ADHD polygenic score (discovery sample ADHD n = 19,099, control sample n = 34,194), 2) basal ganglia volumes, and 3) fractional anisotropy in the corpus callosum and corona radiata. RESULTS: Youths with TBI reported greater ADHD symptom severity compared with those without TBI. Polygenic score was positively associated with ADHD symptoms in youths without TBI but not in youths with TBI. The negative association between the caudate volume and ADHD symptoms was not moderated by a history of TBI. However, the relationship between ADHD symptoms and structure of the genu of the corpus callosum was negative in youths with TBI and positive in youths without TBI. CONCLUSIONS: The identification of distinct ADHD etiology in youths with TBI provides neurobiological insight into the clinical heterogeneity in the disorder. Results indicate that genetic predisposition to ADHD does not increase the risk for ADHD symptoms associated with TBI. ADHD symptoms associated with TBI may be a result of a mechanical insult rather than neurodevelopmental factors.
Kocev B, Hahn HK, Linsend L, Wells WIIIM, Kikinis R. Uncertainty-aware Asynchronous Scattered Motion Interpolation using Gaussian Process Regression. Computerized Medical Imaging and Graphics. 2019;72 :1-12.Abstract
We address the problem of interpolating randomly non-uniformly spatiotemporally scattered uncertain motion measurements, which arises in the context of soft tissue motion estimation. Soft tissue motion estimation is of great interest in the field of image-guided soft-tissue intervention and surgery navigation, because it enables the registration of pre-interventional/pre-operative navigation information on deformable soft-tissue organs. To formally define the measurements as spatiotemporally scattered motion signal samples, we propose a novel motion field representation. To perform the interpolation of the motion measurements in an uncertainty-aware optimal unbiased fashion, we devise a novel Gaussian process (GP) regression model with a non-constant-mean prior and an anisotropic covariance function and show through an extensive evaluation that it outperforms the state-of-the-art GP models that have been deployed previously for similar tasks. The employment of GP regression enables the quantification of uncertainty in the interpolation result, which would allow the amount of uncertainty present in the registered navigation information governing the decisions of the surgeon or intervention specialist to be conveyed.
Vipin A, Ng KK, Ji F, Shim HY, Lim JKW, Pasternak O, Zhou JH, Zhou JH. Amyloid Burden Accelerates White Matter Degradation in Cognitively Normal Elderly Individuals. Hum Brain Mapp. 2019;40 (7) :2065-75.Abstract
Alterations in parietal and temporal white matter microstructure derived from diffusion tensor imaging occur in preclinical and clinical Alzheimer's disease. Amyloid beta (Aβ) deposition and such white matter alterations are two pathological hallmarks of Alzheimer's disease. However, the relationship between these pathologies is not yet understood, partly since conventional diffusion MRI methods cannot distinguish between cellular and extracellular processes. Thus, we studied Aβ-associated longitudinal diffusion MRI changes in Aβ-positive (N = 21) and Aβ-negative (N = 51) cognitively normal elderly obtained from the Alzheimer's Disease Neuroimaging Initiative dataset using linear mixed models. Aβ-positivity was based on Alzheimer's Disease Neuroimaging Initiative amyloid-PET recommendations using a standardized uptake value ratio cut-off of 1.11. We used free-water imaging to distinguish cellular and extracellular changes. We found that Aβ-positive subjects had increased baseline right uncinate fasciculus free-water fraction (FW), associated with worse baseline Alzheimer's disease assessment scale scores. Furthermore, Aβ-positive subjects showed faster decrease in fractional anisotropy (FW-corrected) in the right uncinate fasciculus and faster age-dependent right inferior longitudinal fasciculus FW increases over time. Right inferior longitudinal fasciculus FW increases were associated with greater memory decline. Importantly, these results remained significant after controlling for gray and white matter volume and hippocampal volume. This is the first study to illustrate the influence of Aβ burden on early longitudinal (in addition to baseline) white matter changes in cognitively normal elderly individuals at-risk of Alzheimer's disease, thus underscoring the importance of longitudinal studies in assessing microstructural alterations in individuals at risk of Alzheimer's disease prior to symptoms onset.
Jolley MA, Lasso A, Nam HH, Dinh PV, Scanlan AB, Nguyen AV, Ilina A, Morray B, Glatz AC, McGowan FX, et al. Toward Predictive Modeling of Catheter-based Pulmonary Valve Replacement into Native Right Ventricular Outflow Tracts. Catheter Cardiovasc Interv. 2019;93 (3) :E143-E152.Abstract
BACKGROUND: Pulmonary insufficiency is a consequence of transannular patch repair in Tetralogy of Fallot (ToF) leading to late morbidity and mortality. Transcatheter native outflow tract pulmonary valve replacement has become a reality. However, predicting a secure, atraumatic implantation of a catheter-based device remains a significant challenge due to the complex and dynamic nature of the right ventricular outflow tract (RVOT). We sought to quantify the differences in compression and volume for actual implants, and those predicted by pre-implant modeling. METHODS: We used custom software to interactively place virtual transcatheter pulmonary valves (TPVs) into RVOT models created from pre-implant and post Harmony valve implant CT scans of 5 ovine surgical models of TOF to quantify and visualize device volume and compression. RESULTS: Virtual device placement visually mimicked actual device placement and allowed for quantification of device volume and radius. On average, simulated proximal and distal device volumes and compression did not vary statistically throughout the cardiac cycle (P = 0.11) but assessment was limited by small sample size. In comparison to actual implants, there was no significant pairwise difference in the proximal third of the device (P > 0.80), but the simulated distal device volume was significantly underestimated relative to actual device implant volume (P = 0.06). CONCLUSIONS: This study demonstrates that pre-implant modeling which assumes a rigid vessel wall may not accurately predict the degree of distal RVOT expansion following actual device placement. We suggest the potential for virtual modeling of TPVR to be a useful adjunct to procedural planning, but further development is needed.
Lepage C, Muehlmann M, Tripodis Y, Hufschmidt J, Stamm J, Green K, Wrobel P, Schultz V, Weir I, Alosco ML, et al. Limbic System Structure Volumes and Associated Neurocognitive Functioning in Former NFL Players. Brain Imaging Behav. 2019;13 (3) :725-34.Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.
O'Donnell LJ, Daducci A, Wassermann D, Lenglet C. Advances in Computational and Statistical Diffusion MRI. NMR Biomed. 2019;32 (4) :e3805.Abstract
Computational methods are crucial for the analysis of diffusion magnetic resonance imaging (MRI) of the brain. Computational diffusion MRI can provide rich information at many size scales, including local microstructure measures such as diffusion anisotropies or apparent axon diameters, whole-brain connectivity information that describes the brain's wiring diagram and population-based studies in health and disease. Many of the diffusion MRI analyses performed today were not possible five, ten or twenty years ago, due to the requirements for large amounts of computer memory or processor time. In addition, mathematical frameworks had to be developed or adapted from other fields to create new ways to analyze diffusion MRI data. The purpose of this review is to highlight recent computational and statistical advances in diffusion MRI and to put these advances into context by comparison with the more traditional computational methods that are in popular clinical and scientific use. We aim to provide a high-level overview of interest to diffusion MRI researchers, with a more in-depth treatment to illustrate selected computational advances.
Luo J, Toews M, Machado I, Frisken S, Zhang M, Preiswerk F, Sedghi A, Ding H, Pieper S, Golland P, et al. A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation, in MICCAI 2018. Vol LNCS 11073. Granada, Spain: Springer ; 2018 :30-38.Abstract
A reliable Ultrasound (US)-to-US registration method to compensate for brain shift would substantially improve Image-Guided Neurological Surgery. Developing such a registration method is very challenging, due to factors such as the tumor resection, the complexity of brain pathology and the demand for fast computation. We propose a novel feature-driven active registration framework. Here, landmarks and their displacement are first estimated from a pair of US images using corresponding local image features. Subsequently, a Gaussian Process (GP) model is used to interpolate a dense deformation field from the sparse landmarks. Kernels of the GP are estimated by using variograms and a discrete grid search method. If necessary, the user can actively add new landmarks based on the image context and visualization of the uncertainty measure provided by the GP to further improve the result. We retrospectively demonstrate our registration framework as a robust and accurate brain shift compensation solution on clinical data.
Luo MICCAI 2018
Pace DF, Dalca AV, Brosch T, Geva T, Powell AJ, Weese J, Moghari MH, Golland P. Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018;11045 :334-42.Abstract
We propose a new iterative segmentation model which can be accurately learned from a small dataset. A common approach is to train a model to directly segment an image, requiring a large collection of manually annotated images to capture the anatomical variability in a cohort. In contrast, we develop a segmentation model that recursively evolves a segmentation in several steps, and implement it as a recurrent neural network. We learn model parameters by optimizing the intermediate steps of the evolution in addition to the final segmentation. To this end, we train our segmentation propagation model by presenting incomplete and/or inaccurate input segmentations paired with a recommended next step. Our work aims to alleviate challenges in segmenting heart structures from cardiac MRI for patients with congenital heart disease (CHD), which encompasses a range of morphological deformations and topological changes. We demonstrate the advantages of this approach on a dataset of 20 images from CHD patients, learning a model that accurately segments individual heart chambers and great vessels. Compared to direct segmentation, the iterative method yields more accurate segmentation for patients with the most severe CHD malformations.
Wang J, Wells WM, Golland P, Zhang M. Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification. Med Image Comput Comput Assist Interv. 2018;11070 :880-8.Abstract
This paper presents a novel approach to modeling the pos terior distribution in image registration that is computationally efficient for large deformation diffeomorphic metric mapping (LDDMM). We develop a Laplace approximation of Bayesian registration models entirely in a bandlimited space that fully describes the properties of diffeomorphic transformations. In contrast to current methods, we compute the inverse Hessian at the mode of the posterior distribution of diffeomorphisms directly in the low dimensional frequency domain. This dramatically reduces the computational complexity of approximating posterior marginals in the high dimensional imaging space. Experimental results show that our method is significantly faster than the state-of-the-art diffeomorphic image registration uncertainty quantification algorithms, while producing comparable results. The efficiency of our method strengthens the feasibility in prospective clinical applications, e.g., real- time image-guided navigation for brain surgery.
Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in Microstructural Diffusion Neuroimaging for Psychiatric Disorders. Neuroimage. 2018;182 :259-82.Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Sjölund J, Eklund A, Özarslan E, Herberthson M, Bånkestad M, Knutsson H. Bayesian Uncertainty Quantification in Linear Models for Diffusion MRI. Neuroimage. 2018;175 :272-85.Abstract
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.
Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin C-F, Makris N, Wassermann D, et al. A Comparison of Three Fiber Tract Delineation Methods and their Impact on White Matter Analysis. Neuroimage. 2018;178 :318-31.Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Wu Y, Zhang F, Makris N, Ning Y, Norton I, She S, Peng H, Rathi Y, Feng Y, Wu H, et al. Investigation into Local White Matter Abnormality in Emotional Processing and Sensorimotor Areas using an Automatically Annotated Fiber Clustering in Major Depressive Disorder. Neuroimage. 2018;181 :16-29.Abstract
This work presents an automatically annotated fiber cluster (AAFC) method to enable identification of anatomically meaningful white matter structures from the whole brain tractography. The proposed method consists of 1) a study-specific whole brain white matter parcellation using a well-established data-driven groupwise fiber clustering pipeline to segment tractography into multiple fiber clusters, and 2) a novel cluster annotation method to automatically assign an anatomical tract annotation to each fiber cluster by employing cortical parcellation information across multiple subjects. The novelty of the AAFC method is that it leverages group-wise information about the fiber clusters, including their fiber geometry and cortical terminations, to compute a tract anatomical label for each cluster in an automated fashion. We demonstrate the proposed AAFC method in an application of investigating white matter abnormality in emotional processing and sensorimotor areas in major depressive disorder (MDD). Seven tracts of interest related to emotional processing and sensorimotor functions are automatically identified using the proposed AAFC method as well as a comparable method that uses a cortical parcellation alone. Experimental results indicate that our proposed method is more consistent in identifying the tracts across subjects and across hemispheres in terms of the number of fibers. In addition, we perform a between-group statistical analysis in 31 MDD patients and 62 healthy subjects on the identified tracts using our AAFC method. We find statistical differences in diffusion measures in local regions within a fiber tract (e.g. 4 fiber clusters within the identified left hemisphere cingulum bundle (consisting of 14 clusters) are significantly different between the two groups), suggesting the ability of our method in identifying potential abnormality specific to subdivisions of a white matter structure.
Dalca AV, Bouman KL, Freeman WT, Rost NS, Sabuncu MR, Golland P. Medical Image Imputation from Image Collections. IEEE Trans Med Imaging. 2018.Abstract
We present an algorithm for creating high resolution anatomically plausible images consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large data sets of clinical images contain a wealth of information, time constraints during acquisition result in sparse scans that fail to capture much of the anatomy. These characteristics often render computational analysis impractical as many image analysis algorithms tend to fail when applied to such images. Highly specialized algorithms that explicitly handle sparse slice spacing do not generalize well across problem domains. In contrast, we aim to enable application of existing algorithms that were originally developed for high resolution research scans to significantly undersampled scans. We introduce a generative model that captures fine-scale anatomical structure across subjects in clinical image collections and derive an algorithm for filling in the missing data in scans with large inter-slice spacing. Our experimental results demonstrate that the resulting method outperforms state-of-the-art upsampling super-resolution techniques, and promises to facilitate subsequent analysis not previously possible with scans of this quality. Our implementation is freely available at
Schultz V, Stern RA, Tripodis Y, Stamm J, Wrobel P, Lepage C, Weir I, Guenette JP, Chua A, Alosco ML, et al. Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players. J Neurotrauma. 2018;35 (2) :278-85.Abstract
Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.
Herrmann MD, Clunie DA, Fedorov A, Doyle SW, Pieper S, Klepeis V, Le LP, Mutter GL, Milstone DS, Schultz TJ, et al. Implementing the DICOM Standard for Digital Pathology. J Pathol Inform. 2018;9 :37.Abstract
Background: Digital Imaging and Communications in Medicine (DICOM) is the standard for the representation, storage, and communication of medical images and related information. A DICOM file format and communication protocol for pathology have been defined; however, adoption by vendors and in the field is pending. Here, we implemented the essential aspects of the standard and assessed its capabilities and limitations in a multisite, multivendor healthcare network. Methods: We selected relevant DICOM attributes, developed a program that extracts pixel data and pixel-related metadata, integrated patient and specimen-related metadata, populated and encoded DICOM attributes, and stored DICOM files. We generated the files using image data from four vendor-specific image file formats and clinical metadata from two departments with different laboratory information systems. We validated the generated DICOM files using recognized DICOM validation tools and measured encoding, storage, and access efficiency for three image compression methods. Finally, we evaluated storing, querying, and retrieving data over the web using existing DICOM archive software. Results: Whole slide image data can be encoded together with relevant patient and specimen-related metadata as DICOM objects. These objects can be accessed efficiently from files or through RESTful web services using existing software implementations. Performance measurements show that the choice of image compression method has a major impact on data access efficiency. For lossy compression, JPEG achieves the fastest compression/decompression rates. For lossless compression, JPEG-LS significantly outperforms JPEG 2000 with respect to data encoding and decoding speed. Conclusion: Implementation of DICOM allows efficient access to image data as well as associated metadata. By leveraging a wealth of existing infrastructure solutions, the use of DICOM facilitates enterprise integration and data exchange for digital pathology.