Seitz J, Rathi Y, Lyall A, Pasternak O, Del Re EC, Niznikiewicz M, Nestor P, Seidman LJ, Petryshen TL, Mesholam-Gately RI, et al. Alteration of Gray Matter Microstructure in Schizophrenia. Brain Imaging Behav. 2018;12 (1) :54-63.Abstract
Neuroimaging studies demonstrate gray matter (GM) macrostructural abnormalities in patients with schizophrenia (SCZ). While ex-vivo and genetic studies suggest cellular pathology associated with abnormal neurodevelopmental processes in SCZ, few in-vivo measures have been proposed to target microstructural GM organization. Here, we use diffusion heterogeneity- to study GM microstructure in SCZ. Structural and diffusion magnetic resonance imaging (MRI) were acquired on a 3 Tesla scanner in 46 patients with SCZ and 37 matched healthy controls (HC). After correction for free water, diffusion heterogeneity as well as commonly used diffusion measures FA and MD and volume were calculated for the four cortical lobes on each hemisphere, and compared between groups. Patients with early course SCZ exhibited higher diffusion heterogeneity in the GM of the frontal lobes compared to controls. Diffusion heterogeneity of the frontal lobe showed excellent discrimination between patients and HC, while none of the commonly used diffusion measures such as FA or MD did. Higher diffusion heterogeneity in the frontal lobes in early SCZ may be due to abnormal brain maturation (migration, pruning) before and during adolescence and early adulthood. Further studies are needed to investigate the role of heterogeneity as potential biomarker for SCZ risk.
Nilsson M, Larsson J, Lundberg D, Szczepankiewicz F, Witzel T, Westin C-F, Bryskhe K, Topgaard D. Liquid Crystal Phantom for Validation of Microscopic Diffusion Anisotropy Measurements on Clinical MRI Systems. Magn Reson Med. 2018;79 (3) :1817-28.Abstract
PURPOSE: To develop a phantom for validating MRI pulse sequences and data processing methods to quantify microscopic diffusion anisotropy in the human brain. METHODS: Using a liquid crystal consisting of water, detergent, and hydrocarbon, we designed a 0.5-L spherical phantom showing the theoretically highest possible degree of microscopic anisotropy. Data were acquired on the Connectome scanner using echo-planar imaging signal readout and diffusion encoding with axisymmetric b-tensors of varying magnitude, anisotropy, and orientation. The mean diffusivity, fractional anisotropy (FA), and microscopic FA (µFA) parameters were estimated. RESULTS: The phantom was observed to have values of mean diffusivity similar to brain tissue, and relaxation times compatible with echo-planar imaging echo times on the order of 100 ms. The estimated values of µFA were at the theoretical maximum of 1.0, whereas the values of FA spanned the interval from 0.0 to 0.8 as a result of varying orientational order of the anisotropic domains within each voxel. CONCLUSIONS: The proposed phantom can be manufactured by mixing three widely available chemicals in volumes comparable to a human head. The acquired data are in excellent agreement with theoretical predictions, showing that the phantom is ideal for validating methods for measuring microscopic diffusion anisotropy on clinical MRI systems. 
Lyall AE, Pasternak O, Robinson DG, Newell D, Trampush JW, Gallego JA, Fava M, Malhotra AK, Karlsgodt KH, Kubicki M, et al. Greater Extracellular Free-Water in First-Episode Psychosis Predicts Better Neurocognitive Functioning. Mol Psychiatry. 2018;23 (3) :701-7.Abstract

Free Water Imaging is a novel diffusion magnetic resonance (MR) imaging method that is able to separate changes affecting the extracellular space from those that reflect changes in neuronal cells and processes. A previous Free Water Imaging study in schizophrenia identified significantly greater extracellular water volume in the early stages of the disorder; however, its clinical and functional sequelae have not yet been investigated. Here, we applied Free Water Imaging to a larger cohort of 63 first-episode patients with psychosis and 70 healthy matched controls to better understand the functional significance of greater extracellular water. We used diffusion MR imaging data and the Tract-Based Spatial Statistics analytic pipeline to first analyze fractional anisotropy (FA), the most commonly employed metric for assessing white matter. This comparison was then followed by Free Water Imaging analysis, where two parameters, the fractional volume of extracellular free-water (FW) and cellular tissue FA (FA-t), were estimated and compared across the entire white matter skeleton between groups, and correlated with cognitive measures at baseline and following 12 weeks of antipsychotic treatment. Our results indicated lower FA across the whole brain in patients compared with healthy controls that overlap with significant increases in FW, with only limited decreases in FA-t. In addition, higher FW correlated with better neurocognitive functioning following 12 weeks of antipsychotic treatment. We believe this is the first study to suggest that an extracellular water increase during the first-episode of psychosis, which may be indicative of an acute neuroinflammatory process, and/or cerebral edema may predict better functional outcome.

Gallardo G, Wells III WM, Deriche R, Wassermann D. Groupwise Structural Parcellation of the Whole Cortex: A Logistic Random Effects Model Based Approach. Neuroimage. 2018;170 :307-20.Abstract

Current theories hold that brain function is highly related to long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of several parameters or rely on ad-hoc constraints. Furthermore, none of these methods present a model for the cortical extrinsic connectivity of the cortex. To tackle these problems, we propose a parsimonious model for the extrinsic connectivity and an efficient parceling technique based on clustering of tractograms. Our technique allows the creation of single subject and groupwise parcellations of the whole cortex. The parcellations obtained with our technique are in agreement with structural and functional parcellations in the literature. In particular, the motor and sensory cortex are subdivided in agreement with the human homunculus of Penfield. We illustrate this by comparing our resulting parcels with the motor strip mapping included in the Human Connectome Project data.

Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, et al. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1 (9) :691-696.
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77 (21) :e104-e107.Abstract
Radiomics aims to quantify phenotypic characteristics on medical imaging through the use of automated algorithms. Radiomic artificial intelligence (AI) technology, either based on engineered hard-coded algorithms or deep learning methods, can be used to develop noninvasive imaging-based biomarkers. However, lack of standardized algorithm definitions and image processing severely hampers reproducibility and comparability of results. To address this issue, we developed , a flexible open-source platform capable of extracting a large panel of engineered features from medical images. is implemented in Python and can be used standalone or using 3D Slicer. Here, we discuss the workflow and architecture of and demonstrate its application in characterizing lung lesions. Source code, documentation, and examples are publicly available at With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research. .
Parisot S, Glocker B, Ktena SI, Arslan S, Schirmer MD, Rueckert D. A Flexible Graphical Model for Multi-modal Parcellation of the Cortex . Neuroimage. 2017;162 :226-48.Abstract
Advances in neuroimaging have provided a tremendous amount of in-vivo information on the brain's organisation. Its anatomy and cortical organisation can be investigated from the point of view of several imaging modalities, many of which have been studied for mapping functionally specialised cortical areas. There is strong evidence that a single modality is not sufficient to fully identify the brain's cortical organisation. Combining multiple modalities in the same parcellation task has the potential to provide more accurate and robust subdivisions of the cortex. Nonetheless, existing brain parcellation methods are typically developed and tested on single modalities using a specific type of information. In this paper, we propose Graph-based Multi-modal Parcellation (GraMPa), an iterative framework designed to handle the large variety of available input modalities to tackle the multi-modal parcellation task. At each iteration, we compute a set of parcellations from different modalities and fuse them based on their local reliabilities. The fused parcellation is used to initialise the next iteration, forcing the parcellations to converge towards a set of mutually informed modality specific parcellations, where correspondences are established. We explore two different multi-modal configurations for group-wise parcellation using resting-state fMRI, diffusion MRI tractography, myelin maps and task fMRI. Quantitative and qualitative results on the Human Connectome Project database show that integrating multi-modal information yields a stronger agreement with well established atlases and more robust connectivity networks that provide a better representation of the population.
Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect. 2017;7 (10) :671-82.Abstract
Using electroencephalography (EEG) to elucidate the spontaneous activation of brain resting-state networks (RSNs) is nontrivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources. Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the brain (i.e., the resting-state topographies, so-called microstates). We estimated seven resting-state topographies explaining the EEG data set with k-means clustering (N = 164, 256 electrodes). Using a method specifically designed to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns, we demonstrated that we can estimate the EEG RSNs reliably by measuring the reproducibility of our findings. After subtracting their mean from the seven EEG RSNs, we identified seven state-specific networks. The mean map includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal, insula, and anterior cingulate cortices). While the mean map can be interpreted as a "router," crosslinking multiple functional networks, the seven state-specific RSNs partly resemble and extend previous functional magnetic resonance imaging-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.
Ohtani T, Nestor PG, Bouix S, Newell D, Melonakos ED, McCarley RW, Shenton ME, Kubicki M. Exploring the Neural Substrates of Attentional Control and Human Intelligence: Diffusion Tensor Imaging of Prefrontal White Matter Tractography in Healthy Cognition. Neuroscience. 2017;341 :52-60.Abstract
We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition.
Stock AD, Gelb S, Pasternak O, Ben-Zvi A, Putterman C. The Blood Brain Barrier and Neuropsychiatric Lupus: New Perspectives in Light of Advances in Understanding the Neuroimmune Interface. Autoimmun Rev. 2017;16 (6) :612-9.Abstract
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Burciu RG, Ofori E, Archer DB, Wu SS, Pasternak O, McFarland NR, Okun MS, Vaillancourt DE. Progression Marker of Parkinson's Disease: A 4-year Multi-site Imaging Study. Brain. 2017;140 (8) :2183-92.Abstract
Progression markers of Parkinson's disease are crucial for successful therapeutic development. Recently, a diffusion magnetic resonance imaging analysis technique using a bitensor model was introduced allowing the estimation of the fractional volume of free water within a voxel, which is expected to increase in neurodegenerative disorders such as Parkinson's disease. Prior work demonstrated that free water in the posterior substantia nigra was elevated in Parkinson's disease compared to controls across single- and multi-site cohorts, and increased over 1 year in Parkinson's disease but not in controls at a single site. Here, the goal was to validate free water in the posterior substantia nigra as a progression marker in Parkinson's disease, and describe the pattern of progression of free water in patients with a 4-year follow-up tested in a multicentre international longitudinal study of de novo Parkinson's disease ( The analyses examined: (i) 1-year changes in free water in 103 de novo patients with Parkinson's disease and 49 controls; (ii) 2- and 4-year changes in free water in a subset of 46 patients with Parkinson's disease imaged at baseline, 12, 24, and 48 months; (iii) whether 1- and 2-year changes in free water predict 4-year changes in the Hoehn and Yahr scale; and (iv) the relationship between 4-year changes in free water and striatal binding ratio in a subgroup of Parkinson's disease who had undergone both diffusion and dopamine transporter imaging. Results demonstrated that: (i) free water level in the posterior substantia nigra increased over 1 year in de novo Parkinson's disease but not in controls; (ii) free water kept increasing over 4 years in Parkinson's disease; (iii) sex and baseline free water predicted 4-year changes in free water; (iv) free water increases over 1 and 2 years were related to worsening on the Hoehn and Yahr scale over 4 years; and (v) the 4-year increase in free water was associated with the 4-year decrease in striatal binding ratio in the putamen. Importantly, all longitudinal results were consistent across sites. In summary, this study demonstrates an increase over 1 year in free water in the posterior substantia nigra in a large cohort of de novo patients with Parkinson's disease from a multi-site cohort study and no change in healthy controls, and further demonstrates an increase of free water in Parkinson's disease over the course of 4 years. A key finding was that results are consistent across sites and the 1-year and 2-year increase in free water in the posterior substantia nigra predicts subsequent long-term progression on the Hoehn and Yahr staging system. Collectively, these findings demonstrate that free water in the posterior substantia nigra is a valid, progression imaging marker of Parkinson's disease, which may be used in clinical trials of disease-modifying therapies.
Pouch AM, Aly AH, Lasso A, Nguyen AV, Scanlan AB, McGowan FX, Fichtinger G, Gorman RC, Gorman JH, Yushkevich PA, et al. Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome. Funct Imaging Model Heart. 2017;10263 :95-105.Abstract
Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.
Maier-Hein L, Vedula S, Speidel S, Navab N, Kikinis R, Eisenman M, Feussner H, Forestier G. Surgical Data Science for Next-generation Interventions. Nature Biomedical Engineering. 2017;1 :691-6.
Maier-Hein L, Vedula S, Speidel S, Navab N, Kikinis R, Park A, Eisenman M, Feussner H, Forestier G. Surgical Data Science: Enabling Next-generation Surgery. Nature Biomedical Engineering. 2017. Maier-Hein-NBE2017.pdf
Schabdach J, Wells WM, Cho M, Batmanghelich KN. A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies. Inf Process Med Imaging. 2017;10265 :170-183.Abstract
We propose a non-parametric approach for characterizing heterogeneous diseases in large-scale studies. We target diseases where multiple types of pathology present simultaneously in each subject and a more severe disease manifests as a higher level of tissue destruction. For each subject, we model theof local image descriptors as samples generated by an unknown subject-specific probability density. Instead of approximating the probability density via a parametric family, we propose to side step the parametric inference by directly estimating the divergence between subject densities. Our method maps the collection of local image descriptors to a signaturethat is used to predict a clinical measurement. We are able to interpret the prediction of the clinical variable in the population and individual levels by carefully studying the divergences. We illustrate an application this method on simulated data as well as on a large-scale lung CT study of Chronic Obstructive Pulmonary Disease (COPD). Our approach outperforms classical methods on both simulated and COPD data and demonstrates the state-of-the-art prediction on an important physiologic measure of airflow (the forced respiratory volume in one second, FEV1).
Saito Y, Kubicki M, Koerte IK, Otsuka T, Rathi Y, Pasternak O, Bouix S, Eckbo R, Kikinis Z, von Hohenberg C, et al. Impaired White Matter Connectivity between Regions Containing Mirror Neurons, and Relationship to Negative Symptoms and Social Cognition, in Patients with First-Episode Schizophrenia. Brain Imaging Behav. 2017.Abstract
In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.
Zhang M, Liao R, Dalca AV, Turk EA, Luo J, Grant EP, Golland P. Frequency Diffeomorphisms for Efficient Image Registration. Inf Process Med Imaging. 2017;10265 :559-570.Abstract
This paper presents an efficient algorithm for large deformation diffeomorphic metric mapping (LDDMM) with geodesic shooting for image registration. We introduce a novel finite dimensional Fourier representation of diffeomorphic deformations based on the key fact that the high frequency components of a diffeomorphism remain stationary throughout the integration process when computing the deformation associated with smooth velocity fields. We show that manipulating high dimensional diffeomorphisms can be carried out entirely in the bandlimited space by integrating the nonstationary low frequency components of the displacement field. This insight substantially reduces the computational cost of the registration problem. Experimental results show that our method is significantly faster than the state-of-the-art diffeomorphic image registration methods while producing equally accurate alignment. We demonstrate our algorithm in two different applications of image registration: neuroimaging and in-utero imaging.
Dalca AV, Bouman KL, Freeman WT, Rost NS, Sabuncu MR, Golland P. Population Based Image Imputation. Inf Process Med Imaging. 2017;10265 :659-671.Abstract
We present an algorithm for creating high resolution anatomically plausible images consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large databases of clinical images contain a wealth of information, medical acquisition constraints result in sparse scans that miss much of the anatomy. These characteristics often render computational analysis impractical as standard processing algorithms tend to fail when applied to such images. Highly specialized or application-specific algorithms that explicitly handle sparse slice spacing do not generalize well across problem domains. In contrast, our goal is to enable application of existing algorithms that were originally developed for high resolution research scans to significantly undersampled scans. We introduce a model that captures fine-scale anatomical similarity across subjects in clinical image collections and use it to fill in the missing data in scans with large slice spacing. Our experimental results demonstrate that the proposed method outperforms current upsampling methods and promises to facilitate subsequent analysis not previously possible with scans of this quality.
Oestreich LKL, Lyall AE, Pasternak O, Kikinis Z, Newell DT, Savadjiev P, Bouix S, Shenton ME, Kubicki M, Kubicki M, Whitford TJ, et al. Characterizing White Matter Changes in Chronic Schizophrenia: A Free-water Imaging Multi-site Study. Schizophr Res. 2017;189 :153-61.Abstract
Diffusion tensor imaging (DTI) studies in chronic schizophrenia have found widespread but often inconsistent patterns of white matter abnormalities. These studies have typically used the conventional measure of fractional anisotropy, which can be contaminated by extracellular free-water. A recent free-water imaging study reported reduced free-water corrected fractional anisotropy (FAT) in chronic schizophrenia across several brain regions, but limited changes in the extracellular volume. The present study set out to validate these findings in a substantially larger sample. Tract-based spatial statistics (TBSS) was performed in 188 healthy controls and 281 chronic schizophrenia patients. Forty-two regions of interest (ROIs), as well as average whole-brain FAT and FW were extracted from free-water corrected diffusion tensor maps. Compared to healthy controls, reduced FAT was found in the chronic schizophrenia group in the anterior limb of the internal capsule bilaterally, the posterior thalamic radiation bilaterally, as well as the genu and body of the corpus callosum. While a significant main effect of group was observed for FW, none of the follow-up contrasts survived correction for multiple comparisons. The observed FAT reductions in the absence of extracellular FW changes, in a large, multi-site sample of chronic schizophrenia patients, validate the pattern of findings reported by a previous, smaller free-water imaging study of a similar sample. The limited number of regions in which FAT was reduced in the schizophrenia group suggests that actual white matter tissue degeneration in chronic schizophrenia, independent of extracellular FW, might be more localized than suggested previously.
Ofori E, Krismer F, Burciu RG, Pasternak O, McCracken JL, Lewis MM, Du G, McFarland NR, Okun MS, Poewe W, et al. Free Water Improves Detection of Changes in the Substantia Nigra in Parkinsonism: A Multisite Study. Mov Disord. 2017;32 (10) :1457-64.Abstract
BACKGROUND: Imaging markers that are sensitive to parkinsonism across multiple sites are critically needed for clinical trials. The objective of this study was to evaluate changes in the substantia nigra using single- and bi-tensor models of diffusion magnetic resonance imaging in PD, MSA, and PSP. METHODS: The study cohort (n = 425) included 107 healthy controls and 184 PD, 63 MSA, and 71 PSP patients from 3 movement disorder centers. Bi-tensor free water, free-water-corrected fractional anisotropy, free-water-corrected mean diffusivity, single-tensor fractional anisotropy, and single-tensor mean diffusivity were computed for the anterior and posterior substantia nigra. Correlations were computed between diffusion MRI measures and clinical measures. RESULTS: In the posterior substantia nigra, free water was greater for PSP than MSA and PD patients and controls. PD and MSA both had greater free water than controls. Free-water-corrected fractional anisotropy values were greater for PSP patents than for controls and PD patients. PSP and MSA patient single-tensor mean diffusivity values were greater than controls, and single-tensor fractional anisotropy values were lower for PSP patients than for healthy controls. The parkinsonism effect size for free water was 0.145 in the posterior substantia nigra and 0.072 for single-tensor mean diffusivity. The direction of correlations between single-tensor mean diffusivity and free-water values and clinical scores was similar at each site. CONCLUSIONS: Free-water values in the posterior substantia nigra provide a consistent pattern of findings across patients with PD, MSA, and PSP in a large cohort across 3 sites. Free water in the posterior substantia nigra relates to clinical measures of motor and cognitive symptoms in a large cohort of parkinsonism. © 2017 International Parkinson and Movement Disorder Society.