Publications

2018
Chad JA, Pasternak O, Salat DH, Chen JJ. Re-examining Age-related Differences in White Matter Microstructure with Free-water Corrected Diffusion Tensor Imaging. Neurobiol Aging. 2018;71 :161-70.Abstract
Diffusion tensor imaging (DTI) has been used extensively to investigate white matter (WM) microstructural changes during healthy adult aging. However, WM fibers are known to shrink throughout the lifespan, leading to larger interstitial spaces with age. This could allow more extracellular free water molecules to bias DTI metrics, which are relied upon to provide WM microstructural information. Using a cohort of 212 participants, we demonstrate that WM microstructural changes in aging are potentially less pronounced than previously reported once the free water compartment is eliminated. After free water elimination, DTI parameters show age-related differences that match histological evidence of myelin degradation and debris accumulation. The fraction of free water is further shown to associate better with age than any of the conventional DTI parameters. Our findings suggest that DTI analyses involving free water are likely to yield novel insight into retrospective re-analysis of data and to answer new questions in ongoing DTI studies of brain aging.
Lasso A, Nam HH, Dinh PV, Pinter C, Fillion-Robin J-C, Pieper S, Jhaveri S, Vimort J-B, Martin K, Asselin M, et al. Interaction with Volume-Rendered Three-Dimensional Echocardiographic Images in Virtual Reality. J Am Soc Echocardiogr. 2018;31 (10) :1158-60.
Luo J, Frisken S, Machado I, Zhang M, Pieper S, Golland P, Toews M, Unadkat P, Sedghi A, Zhou H, et al. Using the Variogram for Vector Outlier Screening: Application to Feature-based Image Registration. Int J Comput Assist Radiol Surg. 2018;13 (12) :1871-80.Abstract
PURPOSE: Matching points that are derived from features or landmarks in image data is a key step in some medical imaging applications. Since most robust point matching algorithms claim to be able to deal with outliers, users may place high confidence in the matching result and use it without further examination. However, for tasks such as feature-based registration in image-guided neurosurgery, even a few mismatches, in the form of invalid displacement vectors, could cause serious consequences. As a result, having an effective tool by which operators can manually screen all matches for outliers could substantially benefit the outcome of those applications. METHODS: We introduce a novel variogram-based outlier screening method for vectors. The variogram is a powerful geostatistical tool for characterizing the spatial dependence of stochastic processes. Since the spatial correlation of invalid displacement vectors, which are considered as vector outliers, tends to behave differently than normal displacement vectors, they can be efficiently identified on the variogram. RESULTS: We validate the proposed method on 9 sets of clinically acquired ultrasound data. In the experiment, potential outliers are flagged on the variogram by one operator and further evaluated by 8 experienced medical imaging researchers. The matching quality of those potential outliers is approximately 1.5 lower, on a scale from 1 (bad) to 5 (good), than valid displacement vectors. CONCLUSION: The variogram is a simple yet informative tool. While being used extensively in geostatistical analysis, it has not received enough attention in the medical imaging field. We believe there is a good deal of potential for clinically applying the proposed outlier screening method. By way of this paper, we also expect researchers to find variogram useful in other medical applications that involve motion vectors analyses.
Hong Y, O'Donnell LJ, Savadjiev P, Zhang F, Wassermann D, Pasternak O, Johnson H, Paulsen J, Vonsattel J-P, Makris N, et al. Genetic Load Determines Atrophy in Hand Cortico-striatal Pathways in Presymptomatic Huntington's Disease. Hum Brain Mapp. 2018;39 (10) :3871-83.Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes progressive breakdown of striatal neurons. Standard white matter integrity measures like fractional anisotropy and mean diffusivity derived from diffusion tensor imaging were analyzed in prodromal-HD subjects; however, they studied either a whole brain or specific subcortical white matter structures with connections to cortical motor areas. In this work, we propose a novel analysis of a longitudinal cohort of 243 prodromal-HD individuals and 88 healthy controls who underwent two or more diffusion MRI scans as part of the PREDICT-HD study. We separately trace specific white matter fiber tracts connecting the striatum (caudate and putamen) with four cortical regions corresponding to the hand, face, trunk, and leg motor areas. A multi-tensor tractography algorithm with an isotropic volume fraction compartment allows estimating diffusion of fast-moving extra-cellular water in regions containing crossing fibers and provides quantification of a microstructural property related to tissue atrophy. The tissue atrophy rate is separately analyzed in eight cortico-striatal pathways as a function of CAG-repeats (genetic load) by statistically regressing out age effect from our cohort. The results demonstrate a statistically significant increase in isotropic volume fraction (atrophy) bilaterally in hand fiber connections to the putamen with increasing CAG-repeats, which connects the genetic abnormality (CAG-repeats) to an imaging-based microstructural marker of tissue integrity in specific white matter pathways in HD. Isotropic volume fraction measures in eight cortico-striatal pathways are also correlated significantly with total motor scores and diagnostic confidence levels, providing evidence of their relevance to HD clinical presentation.
Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ, Somes N, Karmacharya S, Lepage C, Wrobel P, et al. Automated versus Manual Segmentation of Brain Region Volumes in Former Football Players. Neuroimage Clin. 2018;18 :888-96.Abstract
Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ± 8.0 years) and 22 control subjects (57.0 ± 6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.
Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, et al. Non-rigid Registration of 3D Ultrasound for Neurosurgery using Automatic Feature Detection and Matching. Int J Comput Assist Radiol Surg. 2018;13 (10) :1525-38.Abstract
PURPOSE: The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. METHODS: A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. RESULTS: Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. CONCLUSIONS: This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, et al. Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS One. 2018;13 (5) :e0197056.Abstract
PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Özarslan E, Yolcu C, Herberthson M, Knutsson H, Westin C-F. Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal . Front Phys. 2018;6.Abstract
Neuronal and glial projections can be envisioned to be tubes of infinitesimal diameter as far as diffusion magnetic resonance (MR) measurements via clinical scanners are concerned. Recent experimental studies indicate that the decay of the orientationally-averaged signal in white-matter may be characterized by the power-law, () ∝ , where is the wavenumber determined by the parameters of the pulsed field gradient measurements. One particular study by McKinnon . [1] reports a distinctively faster decay in gray-matter. Here, we assess the role of the size and curvature of the neurites and glial arborizations in these experimental findings. To this end, we studied the signal decay for diffusion along general curves at all three temporal regimes of the traditional pulsed field gradient measurements. We show that for curvy projections, employment of longer pulse durations leads to a disappearance of the decay, while such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions, the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are curved. We note that the above discussion is valid for an intermediate range of -values as the true asymptotic behavior of the signal decay is () ∝ for narrow pulses (through Debye-Porod law) or steeper for longer pulses. This study is expected to provide insights for interpreting the diffusion-weighted images of the central nervous system and aid in the design of acquisition strategies.
Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, Weaver JC, Al-Mefty O, Golby AJ, Dunn IF. 3D Printing and Intraoperative Neuronavigation Tailoring for Skull Base Reconstruction after Extended Endoscopic Endonasal Surgery: Proof of Concept . J Neurosurg. 2018 :1-8.Abstract
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
McCarthy-Jones S, Oestreich LKL, Lyall AE, Kikinis Z, Newell DT, Savadjiev P, Shenton ME, Kubicki M, Pasternak O, Whitford TJ, et al. Childhood Adversity Associated with White Matter Alteration in the Corpus Callosum, Corona Radiata, and Uncinate Fasciculus of Psychiatrically Healthy Adults. Brain Imaging Behav. 2018;12 (2) :449-58.Abstract
Diffusion tensor imaging studies report childhood adversity (CA) is associated with reduced fractional anisotropy (FA) in multiple white matter tracts in adults. Reduced FA may result from changes in tissue, suggesting myelin/axonal damage, and/or from increased levels of extracellular free-water, suggesting atrophy or neuroinflammation. Free-water imaging can separately identify FA in tissue (FA) and the fractional volume of free-water (FW). We tested whether CA was associated with altered FA, FA, and FW in seven white matter regions of interest (ROI), in which FA changes had been previously linked to CA (corona radiata, corpus callosum, fornix, cingulum bundle: hippocampal projection, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus). Tract-based spatial statistics were performed in 147 psychiatrically healthy adults who had completed a self-report questionnaire on CA primarily stemming from parental maltreatment. ROI were extracted according to the protocol provided by the ENIGMA-DTI working group. Analyses were performed both treating CA as a continuous and a categorical variable. CA was associated with reduced FA in all ROI (although categorical analyses failed to find an association in the fornix). In contrast, CA was only associated with reduced FAin the corona radiata, corpus callosum, and uncinate fasciculus (with the continuous measure of CA finding evidence of a negative relation between CA and FAin the fornix). There was no association between CA on FW in any ROI. These results provide preliminary evidence that childhood adversity is associated with changes to the microstructure of white matter itself in adulthood. However, these results should be treated with caution until they can be replicated by future studies which address the limitations of the present study.
Yao S, Zhang J, Zhao Y, Hou Y, Xu X, Zhang Z, Kikinis R, Chen X. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm. World Neurosurg. 2018;113 :e499-e507.Abstract
OBJECTIVE: To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). METHODS: This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. RESULTS: For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. CONCLUSIONS: Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view.
Duering M, Finsterwalder S, Baykara E, Tuladhar AM, Gesierich B, Konieczny MJ, Malik R, Franzmeier N, Ewers M, Jouvent E, et al. Free Water Determines Diffusion Alterations and Clinical Status in Cerebral Small Vessel Disease. Alzheimers Dement. 2018;14 :764-74.Abstract
INTRODUCTION: Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. METHODS: To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). RESULTS: Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (Rup to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. DISCUSSION: Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization.
Guttuso T, Bergsland N, Hagemeier J, Lichter DG, Pasternak O, Zivadinov R. Substantia Nigra Free Water Increases Longitudinally in Parkinson Disease. AJNR Am J Neuroradiol. 2018;39 (3) :479-84.Abstract
BACKGROUND AND PURPOSE: Free water in the posterior substantia nigra obtained from a bi-tensor diffusion MR imaging model has been shown to significantly increase over 1- and 4-year periods in patients with early-stage idiopathic Parkinson disease compared with healthy controls, which suggests that posterior substantia nigra free water may be an idiopathic Parkinson disease progression biomarker. Due to the known temporal posterior-to-anterior substantia nigra degeneration in idiopathic Parkinson disease, we assessed longitudinal changes in free water in both the posterior and anterior substantia nigra in patients with later-stage idiopathic Parkinson disease and age-matched healthy controls for comparison. MATERIALS AND METHODS: Nineteen subjects with idiopathic Parkinson disease and 19 age-matched healthy control subjects were assessed on the same 3T MR imaging scanner at baseline and after approximately 3 years. RESULTS: Baseline mean idiopathic Parkinson disease duration was 7.1 years. Both anterior and posterior substantia nigra free water showed significant intergroup differences at baseline (< .001 and= .014, respectively, idiopathic Parkinson disease versus healthy controls); however, only anterior substantia nigra free water showed significant longitudinal group × time interaction increases (= .021, idiopathic Parkinson disease versus healthy controls). There were no significant longitudinal group × time interaction differences found for conventional diffusion tensor imaging or free water-corrected DTI assessments in either the anterior or posterior substantia nigra. CONCLUSIONS: Results from this study provide further evidence supporting substantia nigra free water as a promising disease-progression biomarker in idiopathic Parkinson disease that may help to identify disease-modifying therapies if used in future clinical trials. Our novel finding of longitudinal increases in anterior but not posterior substantia nigra free water is potentially a result of the much longer disease duration of our cohort compared with previously studied cohorts and the known posterior-to-anterior substantia nigra degeneration that occurs over time in idiopathic Parkinson disease.
Ning L, Nilsson M, Lasič S, Westin C-F, Rathi Y. Cumulant Expansions for Measuring Water Exchange using Diffusion MRI. J Chem Phys. 2018;148 (7) :074109.Abstract
The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.
Albi A, Meola A, Zhang F, Kahali P, Rigolo L, Tax CMW, Ciris PA, Essayed WI, Unadkat P, Norton I, et al. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects. J Neuroimaging. 2018;28 (2) :173-82.Abstract
BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.
Zhang F, Wu W, Ning L, McAnulty G, Waber D, Gagoski B, Sarill K, Hamoda HM, Song Y, Cai W, et al. Suprathreshold Fiber Cluster Statistics: Leveraging White Matter Geometry to Enhance Tractography Statistical Analysis. Neuroimage. 2018;171 :341-54.Abstract
This work presents a suprathreshold fiber cluster (STFC) method that leverages the whole brain fiber geometry to enhance statistical group difference analyses. The proposed method consists of 1) a well-established study-specific data-driven tractography parcellation to obtain white matter tract parcels and 2) a newly proposed nonparametric, permutation-test-based STFC method to identify significant differences between study populations. The basic idea of our method is that a white matter parcel's neighborhood (nearby parcels with similar white matter anatomy) can support the parcel's statistical significance when correcting for multiple comparisons. We propose an adaptive parcel neighborhood strategy to allow suprathreshold fiber cluster formation that is robust to anatomically varying inter-parcel distances. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder patients and 29 healthy controls. Evaluations are conducted using both synthetic and in-vivo data. The results indicate that the STFC method gives greater sensitivity in finding group differences in white matter tract parcels compared to several traditional multiple comparison correction methods.
Saito Y, Kubicki M, Koerte I, Otsuka T, Rathi Y, Pasternak O, Bouix S, Eckbo R, Kikinis Z, Clemm von Hohenberg C, et al. Impaired White Matter Connectivity between Regions Containing Mirror Neurons, and Relationship to Negative Symptoms and Social Cognition, in Patients with First-Episode Schizophrenia. Brain Imaging Behav. 2018;12 (1) :229-37.Abstract
In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.
Toews M, Wells WM. Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe. IEEE Trans Med Imaging. 2018;37 (1) :262-72.Abstract
This paper presents a method for automatically calibrating and assessing the calibration quality of an externally tracked 2-D ultrasound (US) probe by scanning arbitrary, natural tissues, as opposed a specialized calibration phantom as is the typical practice. A generative topic model quantifies the posterior probability of calibration parameters conditioned on local 2-D image features arising from a generic underlying substrate. Auto-calibration is achieved by identifying the maximum a-posteriori image-to-probe transform, and calibration quality is assessed online in terms of the posterior probability of the current image-to-probe transform. Both are closely linked to the 3-D point reconstruction error (PRE) in aligning feature observations arising from the same underlying physical structure in different US images. The method is of practical importance in that it operates simply by scanning arbitrary textured echogenic structures, e.g., in-vivo tissues in the context of the US-guided procedures, without requiring specialized calibration procedures or equipment. Observed data take the form of local scale-invariant features that can be extracted and fit to the model in near real-time. Experiments demonstrate the method on a public data set of in vivo human brain scans of 14 unique subjects acquired in the context of neurosurgery. Online calibration assessment can be performed at approximately 3 Hz for the US images of pixels. Auto-calibration achieves an internal mean PRE of 1.2 mm and a discrepancy of [2 mm, 6 mm] in comparison to the calibration via a standard phantom-based method.
Black D, Unger M, Fischer N, Kikinis R, Hahn H, Neumuth T, Glaser B. Auditory Display as Feedback for a Novel Eye-tracking System for Sterile Operating Room Interaction. Int J Comput Assist Radiol Surg. 2018;13 (1) :37-45.Abstract
PURPOSE: The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. METHODS: An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. RESULTS: When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. CONCLUSION: Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.
Black D, Hahn HK, Kikinis R, Wårdell K, Haj-Hosseini N. Auditory Display for Fluorescence-guided Open Brain Tumor Surgery. Int J Comput Assist Radiol Surg. 2018;13 (1) :25-35.Abstract
PURPOSE: Protoporphyrin (PpIX) fluorescence allows discrimination of tumor and normal brain tissue during neurosurgery. A handheld fluorescence (HHF) probe can be used for spectroscopic measurement of 5-ALA-induced PpIX to enable objective detection compared to visual evaluation of fluorescence. However, current technology requires that the surgeon either views the measured values on a screen or employs an assistant to verbally relay the values. An auditory feedback system was developed and evaluated for communicating measured fluorescence intensity values directly to the surgeon. METHODS: The auditory display was programmed to map the values measured by the HHF probe to the playback of tones that represented three fluorescence intensity ranges and one error signal. Ten persons with no previous knowledge of the application took part in a laboratory evaluation. After a brief training period, participants performed measurements on a tray of 96 wells of liquid fluorescence phantom and verbally stated the perceived measurement values for each well. The latency and accuracy of the participants' verbal responses were recorded. The long-term memorization of sound function was evaluated in a second set of 10 participants 2-3 and 7-12 days after training. RESULTS: The participants identified the played tone accurately for 98% of measurements after training. The median response time to verbally identify the played tones was 2 pulses. No correlation was found between the latency and accuracy of the responses, and no significant correlation with the musical proficiency of the participants was observed on the function responses. Responses for the memory test were 100% accurate. CONCLUSION: The employed auditory display was shown to be intuitive, easy to learn and remember, fast to recognize, and accurate in providing users with measurements of fluorescence intensity or error signal. The results of this work establish a basis for implementing and further evaluating auditory displays in clinical scenarios involving fluorescence guidance and other areas for which categorized auditory display could be useful.

Pages