Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in Microstructural Diffusion Neuroimaging for Psychiatric Disorders. Neuroimage. 2018;182 :259-82.Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Sjölund J, Eklund A, Özarslan E, Herberthson M, Bånkestad M, Knutsson H. Bayesian Uncertainty Quantification in Linear Models for Diffusion MRI. Neuroimage. 2018;175 :272-85.Abstract
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.
Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin C-F, Makris N, Wassermann D, et al. A Comparison of Three Fiber Tract Delineation Methods and their Impact on White Matter Analysis. Neuroimage. 2018;178 :318-31.Abstract
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Wu Y, Zhang F, Makris N, Ning Y, Norton I, She S, Peng H, Rathi Y, Feng Y, Wu H, et al. Investigation into Local White Matter Abnormality in Emotional Processing and Sensorimotor Areas using an Automatically Annotated Fiber Clustering in Major Depressive Disorder. Neuroimage. 2018;181 :16-29.Abstract
This work presents an automatically annotated fiber cluster (AAFC) method to enable identification of anatomically meaningful white matter structures from the whole brain tractography. The proposed method consists of 1) a study-specific whole brain white matter parcellation using a well-established data-driven groupwise fiber clustering pipeline to segment tractography into multiple fiber clusters, and 2) a novel cluster annotation method to automatically assign an anatomical tract annotation to each fiber cluster by employing cortical parcellation information across multiple subjects. The novelty of the AAFC method is that it leverages group-wise information about the fiber clusters, including their fiber geometry and cortical terminations, to compute a tract anatomical label for each cluster in an automated fashion. We demonstrate the proposed AAFC method in an application of investigating white matter abnormality in emotional processing and sensorimotor areas in major depressive disorder (MDD). Seven tracts of interest related to emotional processing and sensorimotor functions are automatically identified using the proposed AAFC method as well as a comparable method that uses a cortical parcellation alone. Experimental results indicate that our proposed method is more consistent in identifying the tracts across subjects and across hemispheres in terms of the number of fibers. In addition, we perform a between-group statistical analysis in 31 MDD patients and 62 healthy subjects on the identified tracts using our AAFC method. We find statistical differences in diffusion measures in local regions within a fiber tract (e.g. 4 fiber clusters within the identified left hemisphere cingulum bundle (consisting of 14 clusters) are significantly different between the two groups), suggesting the ability of our method in identifying potential abnormality specific to subdivisions of a white matter structure.
Dalca AV, Bouman KL, Freeman WT, Rost NS, Sabuncu MR, Golland P. Medical Image Imputation from Image Collections. IEEE Trans Med Imaging. 2018.Abstract
We present an algorithm for creating high resolution anatomically plausible images consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large data sets of clinical images contain a wealth of information, time constraints during acquisition result in sparse scans that fail to capture much of the anatomy. These characteristics often render computational analysis impractical as many image analysis algorithms tend to fail when applied to such images. Highly specialized algorithms that explicitly handle sparse slice spacing do not generalize well across problem domains. In contrast, we aim to enable application of existing algorithms that were originally developed for high resolution research scans to significantly undersampled scans. We introduce a generative model that captures fine-scale anatomical structure across subjects in clinical image collections and derive an algorithm for filling in the missing data in scans with large inter-slice spacing. Our experimental results demonstrate that the resulting method outperforms state-of-the-art upsampling super-resolution techniques, and promises to facilitate subsequent analysis not previously possible with scans of this quality. Our implementation is freely available at
Schultz V, Stern RA, Tripodis Y, Stamm J, Wrobel P, Lepage C, Weir I, Guenette JP, Chua A, Alosco ML, et al. Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players. J Neurotrauma. 2018;35 (2) :278-85.Abstract
Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.
Herrmann MD, Clunie DA, Fedorov A, Doyle SW, Pieper S, Klepeis V, Le LP, Mutter GL, Milstone DS, Schultz TJ, et al. Implementing the DICOM Standard for Digital Pathology. J Pathol Inform. 2018;9 :37.Abstract
Background: Digital Imaging and Communications in Medicine (DICOM) is the standard for the representation, storage, and communication of medical images and related information. A DICOM file format and communication protocol for pathology have been defined; however, adoption by vendors and in the field is pending. Here, we implemented the essential aspects of the standard and assessed its capabilities and limitations in a multisite, multivendor healthcare network. Methods: We selected relevant DICOM attributes, developed a program that extracts pixel data and pixel-related metadata, integrated patient and specimen-related metadata, populated and encoded DICOM attributes, and stored DICOM files. We generated the files using image data from four vendor-specific image file formats and clinical metadata from two departments with different laboratory information systems. We validated the generated DICOM files using recognized DICOM validation tools and measured encoding, storage, and access efficiency for three image compression methods. Finally, we evaluated storing, querying, and retrieving data over the web using existing DICOM archive software. Results: Whole slide image data can be encoded together with relevant patient and specimen-related metadata as DICOM objects. These objects can be accessed efficiently from files or through RESTful web services using existing software implementations. Performance measurements show that the choice of image compression method has a major impact on data access efficiency. For lossy compression, JPEG achieves the fastest compression/decompression rates. For lossless compression, JPEG-LS significantly outperforms JPEG 2000 with respect to data encoding and decoding speed. Conclusion: Implementation of DICOM allows efficient access to image data as well as associated metadata. By leveraging a wealth of existing infrastructure solutions, the use of DICOM facilitates enterprise integration and data exchange for digital pathology.
Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N, O'Donnell LJ. An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan. Neuroimage. 2018;179 :429-47.Abstract
This work presents an anatomically curated white matter atlas to enable consistent white matter tract parcellation across different populations. Leveraging a well-established computational pipeline for fiber clustering, we create a tract-based white matter atlas including information from 100 subjects. A novel anatomical annotation method is proposed that leverages population-based brain anatomical information and expert neuroanatomical knowledge to annotate and categorize the fiber clusters. A total of 256 white matter structures are annotated in the proposed atlas, which provides one of the most comprehensive tract-based white matter atlases covering the entire brain to date. These structures are composed of 58 deep white matter tracts including major long range association and projection tracts, commissural tracts, and tracts related to the brainstem and cerebellar connections, plus 198 short and medium range superficial fiber clusters organized into 16 categories according to the brain lobes they connect. Potential false positive connections are annotated in the atlas to enable their exclusion from analysis or visualization. In addition, the proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to enable whole brain connectivity analyses. The atlas and related computational tools are open-source and publicly available. We evaluate the proposed atlas using a testing dataset of 584 diffusion MRI scans from multiple independently acquired populations, across genders, the lifespan (1 day-82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). Experimental results show successful white matter parcellation across subjects from different populations acquired on multiple scanners, irrespective of age, gender or disease indications. Over 99% of the fiber tracts annotated in the atlas were detected in all subjects on average. One advantage in terms of robustness is that the tract-based pipeline does not require any cortical or subcortical segmentations, which can have limited success in young children and patients with brain tumors or other structural lesions. We believe this is the first demonstration of consistent automated white matter tract parcellation across the full lifespan from birth to advanced age.
Ning L, Rathi Y. A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks. IEEE Trans Med Imaging. 2018;37 (9) :1957-69.Abstract
Coherence and causality measures are often used to analyze the influence of one region on another during analysis of functional brain networks. The analysis methods usually involve a regression problem, where the signal of interest is decomposed into a mixture of regressor and a residual signal. In this paper, we revisit this basic problem and present solutions that provide the minimal-entropy residuals for different types of regression filters, such as causal, instantaneously causal, and noncausal filters. Using optimal prediction theory, we derive several novel frequency-domain expressions for partial coherence, causality, and conditional causality analysis. In particular, our solution provides a more accurate estimation of the frequency-domain causality compared with the classical Geweke causality measure. Using synthetic examples and in vivo resting-state functional magnetic resonance imaging data from the human connectome project, we show that the proposed solution is more accurate at revealing frequency-domain linear dependence among high-dimensional signals.
Koppelmans V, Scott JM, Downs ME, Cassady KE, Yuan P, Pasternak O, Wood SJ, De Dios YE, Gadd NE, Kofman I, et al. Exercise Effects on Bed Rest-induced Brain Changes. PLoS One. 2018;13 (10) :e0205515.Abstract
PURPOSE: Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. METHODS: HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. RESULTS: Comparisons of exercisers to controls revealed that exercise led to smaller fitness deterioration with HDBR but did not affect brain volume or connectivity. Group comparisons showed that exercise modulated post-HDBR recovery of brain connectivity in somatosensory regions. Posthoc analysis showed that this was related to functional connectivity decrease with HDBR in non-exercisers but not in exercisers. Correlational analyses between fitness and brain changes showed that fitness decreases were associated with functional connectivity and volumetric increases (all r >.74), potentially reflecting compensation. Modest brain changes or even decreases in connectivity and volume were observed in subjects who maintained or showed small fitness gains. These results did not survive Bonferroni correction, but can be considered meaningful because of the large effect sizes. CONCLUSION: Exercise performed during HDBR mitigates declines in fitness and strength. Associations between fitness and brain connectivity and volume changes, although unadjusted for multiple comparisons in this small sample, suggest that supine exercise reduces compensatory HDBR-induced brain changes.
Chad JA, Pasternak O, Salat DH, Chen JJ. Re-examining Age-related Differences in White Matter Microstructure with Free-water Corrected Diffusion Tensor Imaging. Neurobiol Aging. 2018;71 :161-70.Abstract
Diffusion tensor imaging (DTI) has been used extensively to investigate white matter (WM) microstructural changes during healthy adult aging. However, WM fibers are known to shrink throughout the lifespan, leading to larger interstitial spaces with age. This could allow more extracellular free water molecules to bias DTI metrics, which are relied upon to provide WM microstructural information. Using a cohort of 212 participants, we demonstrate that WM microstructural changes in aging are potentially less pronounced than previously reported once the free water compartment is eliminated. After free water elimination, DTI parameters show age-related differences that match histological evidence of myelin degradation and debris accumulation. The fraction of free water is further shown to associate better with age than any of the conventional DTI parameters. Our findings suggest that DTI analyses involving free water are likely to yield novel insight into retrospective re-analysis of data and to answer new questions in ongoing DTI studies of brain aging.
Lasso A, Nam HH, Dinh PV, Pinter C, Fillion-Robin J-C, Pieper S, Jhaveri S, Vimort J-B, Martin K, Asselin M, et al. Interaction with Volume-Rendered Three-Dimensional Echocardiographic Images in Virtual Reality. J Am Soc Echocardiogr. 2018;31 (10) :1158-60.
Luo J, Frisken S, Machado I, Zhang M, Pieper S, Golland P, Toews M, Unadkat P, Sedghi A, Zhou H, et al. Using the Variogram for Vector Outlier Screening: Application to Feature-based Image Registration. Int J Comput Assist Radiol Surg. 2018;13 (12) :1871-80.Abstract
PURPOSE: Matching points that are derived from features or landmarks in image data is a key step in some medical imaging applications. Since most robust point matching algorithms claim to be able to deal with outliers, users may place high confidence in the matching result and use it without further examination. However, for tasks such as feature-based registration in image-guided neurosurgery, even a few mismatches, in the form of invalid displacement vectors, could cause serious consequences. As a result, having an effective tool by which operators can manually screen all matches for outliers could substantially benefit the outcome of those applications. METHODS: We introduce a novel variogram-based outlier screening method for vectors. The variogram is a powerful geostatistical tool for characterizing the spatial dependence of stochastic processes. Since the spatial correlation of invalid displacement vectors, which are considered as vector outliers, tends to behave differently than normal displacement vectors, they can be efficiently identified on the variogram. RESULTS: We validate the proposed method on 9 sets of clinically acquired ultrasound data. In the experiment, potential outliers are flagged on the variogram by one operator and further evaluated by 8 experienced medical imaging researchers. The matching quality of those potential outliers is approximately 1.5 lower, on a scale from 1 (bad) to 5 (good), than valid displacement vectors. CONCLUSION: The variogram is a simple yet informative tool. While being used extensively in geostatistical analysis, it has not received enough attention in the medical imaging field. We believe there is a good deal of potential for clinically applying the proposed outlier screening method. By way of this paper, we also expect researchers to find variogram useful in other medical applications that involve motion vectors analyses.
Hong Y, O'Donnell LJ, Savadjiev P, Zhang F, Wassermann D, Pasternak O, Johnson H, Paulsen J, Vonsattel J-P, Makris N, et al. Genetic Load Determines Atrophy in Hand Cortico-striatal Pathways in Presymptomatic Huntington's Disease. Hum Brain Mapp. 2018;39 (10) :3871-83.Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that causes progressive breakdown of striatal neurons. Standard white matter integrity measures like fractional anisotropy and mean diffusivity derived from diffusion tensor imaging were analyzed in prodromal-HD subjects; however, they studied either a whole brain or specific subcortical white matter structures with connections to cortical motor areas. In this work, we propose a novel analysis of a longitudinal cohort of 243 prodromal-HD individuals and 88 healthy controls who underwent two or more diffusion MRI scans as part of the PREDICT-HD study. We separately trace specific white matter fiber tracts connecting the striatum (caudate and putamen) with four cortical regions corresponding to the hand, face, trunk, and leg motor areas. A multi-tensor tractography algorithm with an isotropic volume fraction compartment allows estimating diffusion of fast-moving extra-cellular water in regions containing crossing fibers and provides quantification of a microstructural property related to tissue atrophy. The tissue atrophy rate is separately analyzed in eight cortico-striatal pathways as a function of CAG-repeats (genetic load) by statistically regressing out age effect from our cohort. The results demonstrate a statistically significant increase in isotropic volume fraction (atrophy) bilaterally in hand fiber connections to the putamen with increasing CAG-repeats, which connects the genetic abnormality (CAG-repeats) to an imaging-based microstructural marker of tissue integrity in specific white matter pathways in HD. Isotropic volume fraction measures in eight cortico-striatal pathways are also correlated significantly with total motor scores and diagnostic confidence levels, providing evidence of their relevance to HD clinical presentation.
Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ, Somes N, Karmacharya S, Lepage C, Wrobel P, et al. Automated versus Manual Segmentation of Brain Region Volumes in Former Football Players. Neuroimage Clin. 2018;18 :888-96.Abstract
Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ± 8.0 years) and 22 control subjects (57.0 ± 6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.
Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, et al. Non-rigid Registration of 3D Ultrasound for Neurosurgery using Automatic Feature Detection and Matching. Int J Comput Assist Radiol Surg. 2018;13 (10) :1525-38.Abstract
PURPOSE: The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. METHODS: A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. RESULTS: Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. CONCLUSIONS: This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, et al. Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS One. 2018;13 (5) :e0197056.Abstract
PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Özarslan E, Yolcu C, Herberthson M, Knutsson H, Westin C-F. Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal . Front Phys. 2018;6.Abstract
Neuronal and glial projections can be envisioned to be tubes of infinitesimal diameter as far as diffusion magnetic resonance (MR) measurements via clinical scanners are concerned. Recent experimental studies indicate that the decay of the orientationally-averaged signal in white-matter may be characterized by the power-law, () ∝ , where is the wavenumber determined by the parameters of the pulsed field gradient measurements. One particular study by McKinnon . [1] reports a distinctively faster decay in gray-matter. Here, we assess the role of the size and curvature of the neurites and glial arborizations in these experimental findings. To this end, we studied the signal decay for diffusion along general curves at all three temporal regimes of the traditional pulsed field gradient measurements. We show that for curvy projections, employment of longer pulse durations leads to a disappearance of the decay, while such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions, the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are curved. We note that the above discussion is valid for an intermediate range of -values as the true asymptotic behavior of the signal decay is () ∝ for narrow pulses (through Debye-Porod law) or steeper for longer pulses. This study is expected to provide insights for interpreting the diffusion-weighted images of the central nervous system and aid in the design of acquisition strategies.
Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, Weaver JC, Al-Mefty O, Golby AJ, Dunn IF. 3D Printing and Intraoperative Neuronavigation Tailoring for Skull Base Reconstruction after Extended Endoscopic Endonasal Surgery: Proof of Concept . J Neurosurg. 2018 :1-8.Abstract
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
McCarthy-Jones S, Oestreich LKL, Lyall AE, Kikinis Z, Newell DT, Savadjiev P, Shenton ME, Kubicki M, Pasternak O, Whitford TJ, et al. Childhood Adversity Associated with White Matter Alteration in the Corpus Callosum, Corona Radiata, and Uncinate Fasciculus of Psychiatrically Healthy Adults. Brain Imaging Behav. 2018;12 (2) :449-58.Abstract
Diffusion tensor imaging studies report childhood adversity (CA) is associated with reduced fractional anisotropy (FA) in multiple white matter tracts in adults. Reduced FA may result from changes in tissue, suggesting myelin/axonal damage, and/or from increased levels of extracellular free-water, suggesting atrophy or neuroinflammation. Free-water imaging can separately identify FA in tissue (FA) and the fractional volume of free-water (FW). We tested whether CA was associated with altered FA, FA, and FW in seven white matter regions of interest (ROI), in which FA changes had been previously linked to CA (corona radiata, corpus callosum, fornix, cingulum bundle: hippocampal projection, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus). Tract-based spatial statistics were performed in 147 psychiatrically healthy adults who had completed a self-report questionnaire on CA primarily stemming from parental maltreatment. ROI were extracted according to the protocol provided by the ENIGMA-DTI working group. Analyses were performed both treating CA as a continuous and a categorical variable. CA was associated with reduced FA in all ROI (although categorical analyses failed to find an association in the fornix). In contrast, CA was only associated with reduced FAin the corona radiata, corpus callosum, and uncinate fasciculus (with the continuous measure of CA finding evidence of a negative relation between CA and FAin the fornix). There was no association between CA on FW in any ROI. These results provide preliminary evidence that childhood adversity is associated with changes to the microstructure of white matter itself in adulthood. However, these results should be treated with caution until they can be replicated by future studies which address the limitations of the present study.