Publications

2020
Zhang F, Xie G, Leung L, Mooney MA, Epprecht L, Norton I, Rathi Y, Kikinis R, Al-Mefty O, Makris N, et al. Creation of a Novel Trigeminal Tractography Atlas for Automated Trigeminal Nerve Identification. Neuroimage. 2020;220 :117063.Abstract
Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identification of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability, time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50 subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual ROI placement for TGN selection and hence yields a higher successful TGN identification rate.
Haehn D, Franke L, Zhang F, Cetin-Karayumak S, Pieper S, O'Donnell LJ, Rathi Y. TRAKO: Efficient Transmission of Tractography Data for Visualization. Med Image Comput Comput Assist Interv. 2020;12267 :322-32.Abstract
Fiber tracking produces large tractography datasets that are tens of gigabytes in size consisting of millions of streamlines. Such vast amounts of data require formats that allow for efficient storage, transfer, and visualization. We present TRAKO, a new data format based on the Graphics Layer Transmission Format (glTF) that enables immediate graphical and hardware-accelerated processing. We integrate a state-of-the-art compression technique for vertices, streamlines, and attached scalar and property data. We then compare TRAKO to existing tractography storage methods and provide a detailed evaluation on eight datasets. TRAKO can achieve data reductions of over 28x without loss of statistical significance when used to replicate analysis from previously published studies.
Nenning K-H, Furtner J, Kiesel B, Schwartz E, Roetzer T, Fortelny N, Bock C, Grisold A, Marko M, Leutmezer F, et al. Distributed Changes of the Functional Connectome in Patients with Glioblastoma. Sci Rep. 2020;10 (1) :18312.Abstract
Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.
Sydnor VJ, Bouix S, Pasternak O, Hartl E, Levin-Gleba L, Reid B, Tripodis Y, Guenette JP, Kaufmann D, Makris N, et al. Mild Traumatic Brain Injury Impacts Associations Between Limbic System Microstructure and Post-Traumatic Stress Disorder Symptomatology. Neuroimage Clin. 2020;26 :102190.Abstract
BACKGROUND: Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals, yet the neuropathological mechanisms that contribute to this disorder remain to be fully determined. Moreover, it is unclear how exposure to mild traumatic brain injury (mTBI), a condition that is often comorbid with PTSD, particularly among military personnel, affects the clinical and neurological presentation of PTSD. To address these issues, the present study explores relationships between PTSD symptom severity and the microstructure of limbic and paralimbic gray matter brain regions, as well as the impact of mTBI comorbidity on these relationships. METHODS: Structural and diffusion MRI data were acquired from 102 male veterans who were diagnosed with current PTSD. Diffusion data were analyzed with free-water imaging to quantify average CSF-corrected fractional anisotropy (FA) and mean diffusivity (MD) in 18 limbic and paralimbic gray matter regions. Associations between PTSD symptom severity and regional average dMRI measures were examined with repeated measures linear mixed models. Associations were studied separately in veterans with PTSD only, and in veterans with PTSD and a history of military mTBI. RESULTS: Analyses revealed that in the PTSD only cohort, more severe symptoms were associated with higher FA in the right amygdala-hippocampus complex, lower FA in the right cingulate cortex, and lower MD in the left medial orbitofrontal cortex. In the PTSD and mTBI cohort, more severe PTSD symptoms were associated with higher FA bilaterally in the amygdala-hippocampus complex, with higher FA bilaterally in the nucleus accumbens, with lower FA bilaterally in the cingulate cortex, and with higher MD in the right amygdala-hippocampus complex. CONCLUSIONS: These findings suggest that the microstructure of limbic and paralimbic brain regions may influence PTSD symptomatology. Further, given the additional associations observed between microstructure and symptom severity in veterans with head trauma, we speculate that mTBI may exacerbate the impact of brain microstructure on PTSD symptoms, especially within regions of the brain known to be vulnerable to chronic stress. A heightened sensitivity to the microstructural environment of the brain could partially explain why individuals with PTSD and mTBI comorbidity experience more severe symptoms and poorer illness prognoses than those without a history of brain injury. The relevance of these microstructural findings to the conceptualization of PTSD as being a disorder of stress-induced neuronal connectivity loss is discussed.
Rushmore RJ, Wilson-Braun P, Papadimitriou G, Ng I, Rathi Y, Zhang F, O'Donnell LJ, Kubicki M, Bouix S, Yeterian E, et al. 3D Exploration of the Brainstem in 50-Micron Resolution MRI. Front Neuroanat. 2020;14 :40.Abstract
The brainstem, a structure of vital importance in mammals, is currently becoming a principal focus in cognitive, affective, and clinical neuroscience. Midbrain, pontine and medullary structures serve as the conduit for signals between the forebrain and spinal cord, are the epicenter of cranial nerve-circuits and systems, and subserve such integrative functions as consciousness, emotional processing, pain, and motivation. In this study, we parcellated the nuclear masses and the principal fiber pathways that were visible in a high-resolution T2-weighted MRI dataset of 50-micron isotropic voxels of a postmortem human brainstem. Based on this analysis, we generated a detailed map of the human brainstem. To assess the validity of our maps, we compared our observations with histological maps of traditional human brainstem atlases. Given the unique capability of MRI-based morphometric analysis in generating and preserving the morphology of 3D objects from individual 2D sections, we reconstructed the motor, sensory and integrative neural systems of the brainstem and rendered them in 3D representations. We anticipate the utilization of these maps by the neuroimaging community for applications in basic neuroscience as well as in neurology, psychiatry, and neurosurgery, due to their versatile computational nature in 2D and 3D representations in a publicly available capacity.
Miskin N, Unadkat P, Carlton ME, Golby AJ, Young GS, Huang RY. Frequency and Evolution of New Postoperative Enhancement on 3 Tesla Intraoperative and Early Postoperative Magnetic Resonance Imaging. Neurosurgery. 2020;87 (2) :238-46.Abstract
BACKGROUND: Intraoperative magnetic resonance imaging (IO-MRI) provides real-time assessment of extent of resection of brain tumor. Development of new enhancement during IO-MRI can confound interpretation of residual enhancing tumor, although the incidence of this finding is unknown. OBJECTIVE: To determine the frequency of new enhancement during brain tumor resection on intraoperative 3 Tesla (3T) MRI. To optimize the postoperative imaging window after brain tumor resection using 1.5 and 3T MRI. METHODS: We retrospectively evaluated 64 IO-MRI performed for patients with enhancing brain lesions referred for biopsy or resection as well as a subset with an early postoperative MRI (EP-MRI) within 72 h of surgery (N = 42), and a subset with a late postoperative MRI (LP-MRI) performed between 120 h and 8 wk postsurgery (N = 34). Three radiologists assessed for new enhancement on IO-MRI, and change in enhancement on available EP-MRI and LP-MRI. Consensus was determined by majority response. Inter-rater agreement was assessed using percentage agreement. RESULTS: A total of 10 out of 64 (16%) of the IO-MRI demonstrated new enhancement. Seven of 10 patients with available EP-MRI demonstrated decreased/resolved enhancement. One out of 42 (2%) of the EP-MRI demonstrated new enhancement, which decreased on LP-MRI. Agreement was 74% for the assessment of new enhancement on IO-MRI and 81% for the assessment of new enhancement on the EP-MRI. CONCLUSION: New enhancement occurs in intraoperative 3T MRI in 16% of patients after brain tumor resection, which decreases or resolves on subsequent MRI within 72 h of surgery. Our findings indicate the opportunity for further study to optimize the postoperative imaging window.
Canalini L, Klein J, Miller D, Kikinis R. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity in Neurosurgical Procedures. Int J Comput Assist Radiol Surg. 2020;15 (13) :1963-74.Abstract
PURPOSE: Neurosurgeons can have a better understanding of surgical procedures by comparing ultrasound images obtained at different phases of the tumor resection. However, establishing a direct mapping between subsequent acquisitions is challenging due to the anatomical changes happening during surgery. We propose here a method to improve the registration of ultrasound volumes, by excluding the resection cavity from the registration process. METHODS: The first step of our approach includes the automatic segmentation of the resection cavities in ultrasound volumes, acquired during and after resection. We used a convolution neural network inspired by the 3D U-Net. Then, subsequent ultrasound volumes are registered by excluding the contribution of resection cavity. RESULTS: Regarding the segmentation of the resection cavity, the proposed method achieved a mean DICE index of 0.84 on 27 volumes. Concerning the registration of the subsequent ultrasound acquisitions, we reduced the mTRE of the volumes acquired before and during resection from 3.49 to 1.22 mm. For the set of volumes acquired before and after removal, the mTRE improved from 3.55 to 1.21 mm. CONCLUSIONS: We proposed an innovative registration algorithm to compensate the brain shift affecting ultrasound volumes obtained at subsequent phases of neurosurgical procedures. To the best of our knowledge, our method is the first to exclude automatically segmented resection cavities in the registration of ultrasound volumes in neurosurgery.
Fedorov A, Hancock M, Clunie D, Brochhausen M, Bona J, Kirby J, Freymann J, Pieper S, Aerts HJWL, Kikinis R, et al. DICOM Re-encoding of Volumetrically Annotated Lung Imaging Database Consortium (LIDC) Nodules. Med Phys. 2020;47 (11) :5953-65.Abstract
PURPOSE: The dataset contains annotations for lung nodules collected by the Lung Imaging Data Consortium and Image Database Resource Initiative (LIDC) stored as standard DICOM objects. The annotations accompany a collection of computed tomography (CT) scans for over 1000 subjects annotated by multiple expert readers, and correspond to "nodules ≥ 3 mm", defined as any lesion considered to be a nodule with greatest in-plane dimension in the range 3-30 mm regardless of presumed histology. The present dataset aims to simplify reuse of the data with the readily available tools, and is targeted towards researchers interested in the analysis of lung CT images. ACQUISITION AND VALIDATION METHODS: Open source tools were utilized to parse the project-specific XML representation of LIDC-IDRI annotations and save the result as standard DICOM objects. Validation procedures focused on establishing compliance of the resulting objects with the standard, consistency of the data between the DICOM and project-specific representation, and evaluating interoperability with the existing tools. DATA FORMAT AND USAGE NOTES: The dataset utilizes DICOM Segmentation objects for storing annotations of the lung nodules, and DICOM Structured Reporting objects for communicating qualitative evaluations (nine attributes) and quantitative measurements (three attributes) associated with the nodules. The total of 875 subjects contain 6859 nodule annotations. Clustering of the neighboring annotations resulted in 2651 distinct nodules. The data are available in TCIA at https://doi.org/10.7937/TCIA.2018.h7umfurq. POTENTIAL APPLICATIONS: The standardized dataset maintains the content of the original contribution of the LIDC-IDRI consortium, and should be helpful in developing automated tools for characterization of lung lesions and image phenotyping. In addition to those properties, the representation of the present dataset makes it more FAIR (Findable, Accessible, Interoperable, Reusable) for the research community, and enables its integration with other standardized data collections.
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295 (2) :328-38.Abstract
Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 See also the editorial by Kuhl and Truhn in this issue.
Fedorov A, Beichel R, Kalpathy-Cramer J, Clunie D, Onken M, Riesmeier J, Herz C, Bauer C, Beers A, Fillion-Robin J-C, et al. Quantitative Imaging Informatics for Cancer Research. JCO Clin Cancer Inform. 2020;4 :444-53.Abstract
PURPOSE: We summarize Quantitative Imaging Informatics for Cancer Research (QIICR; U24 CA180918), one of the first projects funded by the National Cancer Institute (NCI) Informatics Technology for Cancer Research program. METHODS: QIICR was motivated by the 3 use cases from the NCI Quantitative Imaging Network. 3D Slicer was selected as the platform for implementation of open-source quantitative imaging (QI) tools. Digital Imaging and Communications in Medicine (DICOM) was chosen for standardization of QI analysis outputs. Support of improved integration with community repositories focused on The Cancer Imaging Archive (TCIA). Priorities included improved capabilities of the standard, toolkits and tools, reference datasets, collaborations, and training and outreach. RESULTS: Fourteen new tools to support head and neck cancer, glioblastoma, and prostate cancer QI research were introduced and downloaded over 100,000 times. DICOM was amended, with over 40 correction proposals addressing QI needs. Reference implementations of the standard in a popular toolkit and standalone tools were introduced. Eight datasets exemplifying the application of the standard and tools were contributed. An open demonstration/connectathon was organized, attracting the participation of academic groups and commercial vendors. Integration of tools with TCIA was improved by implementing programmatic communication interface and by refining best practices for QI analysis results curation. CONCLUSION: Tools, capabilities of the DICOM standard, and datasets we introduced found adoption and utility within the cancer imaging community. A collaborative approach is critical to addressing challenges in imaging informatics at the national and international levels. Numerous challenges remain in establishing and maintaining the infrastructure of analysis tools and standardized datasets for the imaging community. Ideas and technology developed by the QIICR project are contributing to the NCI Imaging Data Commons currently being developed.
Zhang F, Cetin Karayumak S, Hoffmann N, Rathi Y, Golby AJ, O'Donnell LJ. Deep White Matter Analysis (DeepWMA): Fast and Consistent Tractography Segmentation. Med Image Anal. 2020;65 :101761.Abstract
White matter tract segmentation, i.e. identifying tractography fibers (streamline trajectories) belonging to anatomically meaningful fiber tracts, is an essential step to enable tract quantification and visualization. In this study, we present a deep learning tractography segmentation method (DeepWMA) that allows fast and consistent identification of 54 major deep white matter fiber tracts from the whole brain. We create a large-scale training tractography dataset of 1 million labeled fiber samples, and we propose a novel 2D multi-channel feature descriptor (FiberMap) that encodes spatial coordinates of points along each fiber. We learn a convolutional neural network (CNN) fiber classification model based on FiberMap and obtain a high fiber classification accuracy of 90.99% on the training tractography data with ground truth fiber labels. Then, the method is evaluated on a test dataset of 597 diffusion MRI scans from six independently acquired populations across genders, the lifespan (1 day - 82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). We perform comparisons with two state-of-the-art tract segmentation methods. Experimental results show that our method obtains a highly consistent tract segmentation result, where on average over 99% of the fiber tracts are successfully identified across all subjects under study, most importantly, including neonates and patients with space-occupying brain tumors. We also demonstrate good generalization of the method to tractography data from multiple different fiber tracking methods. The proposed method leverages deep learning techniques and provides a fast and efficient tool for brain white matter segmentation in large diffusion MRI tractography datasets.
Tseng C-EJ, Gilbert TM, Catanese MC, Hightower BG, Peters AT, Parmar AJ, Kim M, Wang C, Roffman JL, Brown HE, et al. In Vivo Human Brain Expression of Histone Deacetylases in Bipolar Disorder. Transl Psychiatry. 2020;10 (1) :224.Abstract
The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [C]Martinostat. Lower [C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.
Lampinen B, Zampeli A, Björkman-Burtscher IM, Szczepankiewicz F, Källén K, Compagno Strandberg M, Nilsson M. Tensor-Valued Diffusion MRI Differentiates Cortex and White Matter in Malformations of Cortical Development Associated With Epilepsy. Epilepsia. 2020;61 (8) :1701-13.Abstract
OBJECTIVE: Delineation of malformations of cortical development (MCD) is central in presurgical evaluation of drug-resistant epilepsy. Delineation using magnetic resonance imaging (MRI) can be ambiguous, however, because the conventional T - and T -weighted contrasts depend strongly on myelin for differentiation of cortical tissue and white matter. Variations in myelin content within both cortex and white matter may cause MCD findings on MRI to change size, become undetectable, or disagree with histopathology. The novel tensor-valued diffusion MRI (dMRI) technique maps microscopic diffusion anisotropy, which is sensitive to axons rather than myelin. This work investigated whether tensor-valued dMRI may improve differentiation of cortex and white matter in the delineation of MCD. METHODS: Tensor-valued dMRI was performed on a 7 T MRI scanner in 13 MCD patients (age = 32 ± 13 years) featuring periventricular heterotopia, subcortical heterotopia, focal cortical dysplasia, and polymicrogyria. Data analysis yielded maps of microscopic anisotropy that were compared with T -weighted and T -fluid-attenuated inversion recovery images and with the fractional anisotropy from diffusion tensor imaging. RESULTS: Maps of microscopic anisotropy revealed large white matter-like regions within MCD that were uniformly cortex-like in the conventional MRI contrasts. These regions were seen particularly in the deep white matter parts of subcortical heterotopias and near the gray-white boundaries of focal cortical dysplasias and polymicrogyrias. SIGNIFICANCE: By being sensitive to axons rather than myelin, mapping of microscopic anisotropy may yield a more robust differentiation of cortex and white matter and improve MCD delineation in presurgical evaluation of epilepsy.
Ziegler E, Urban T, Brown D, Petts J, Pieper SD, Lewis R, Hafey C, Harris GJ. Open Health Imaging Foundation Viewer: An Extensible Open-Source Framework for Building Web-Based Imaging Applications to Support Cancer Research. JCO Clin Cancer Inform. 2020;4 :336-45.Abstract
PURPOSE: Zero-footprint Web architecture enables imaging applications to be deployed on premise or in the cloud without requiring installation of custom software on the user's computer. Benefits include decreased costs and information technology support requirements, as well as improved accessibility across sites. The Open Health Imaging Foundation (OHIF) Viewer is an extensible platform developed to leverage these benefits and address the demand for open-source Web-based imaging applications. The platform can be modified to support site-specific workflows and accommodate evolving research requirements. MATERIALS AND METHODS: The OHIF Viewer provides basic image review functionality (eg, image manipulation and measurement) as well as advanced visualization (eg, multiplanar reformatting). It is written as a client-only, single-page Web application that can easily be embedded into third-party applications or hosted as a standalone Web site. The platform provides extension points for software developers to include custom tools and adapt the system for their workflows. It is standards compliant and relies on DICOMweb for data exchange and OpenID Connect for authentication, but it can be configured to use any data source or authentication flow. Additionally, the user interface components are provided in a standalone component library so that developers can create custom extensions. RESULTS: The OHIF Viewer and its underlying components have been widely adopted and integrated into multiple clinical research platforms (e,g Precision Imaging Metrics, XNAT, LabCAS, ISB-CGC) and commercial applications (eg, Osirix). It has also been used to build custom imaging applications (eg, ProstateCancer.ai, Crowds Cure Cancer [presented as a case study]). CONCLUSION: The OHIF Viewer provides a flexible framework for building applications to support imaging research. Its adoption could reduce redundancies in software development for National Cancer Institute-funded projects, including Informatics Technology for Cancer Research and the Quantitative Imaging Network.
Fennessy FM, Fedorov A, Vangel MG, Mulkern RV, Tretiakova M, Lis RT, Tempany C, Taplin M-E. Multiparametric MRI as a Biomarker of Response to Neoadjuvant Therapy for Localized Prostate Cancer-A Pilot Study. Acad Radiol. 2020;27 (10) :1432-9.Abstract
RATIONALE AND OBJECTIVES: To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS: This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman's rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS: At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10 vs. 1277 ± 213 × 10 mm/sec, p = 0.0005; K: 0.346 ± 0.16 vs. 0.144 ± 0.06 min, p = 0.002; AUC: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI K (0.346 ± 0.16 to 0.188 ± 0.08 min; p = 0.02) and AUC (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION: Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.
Abaci Turk E, Abulnaga MS, Luo J, Stout JN, Feldman HA, Turk A, Gagoski B, Wald LL, Adalsteinsson E, Roberts DJ, et al. Placental MRI: Effect of Maternal Position and Uterine Contractions on Placental BOLD MRI Measurements. Placenta. 2020;95 :69-77.Abstract
INTRODUCTION: Before using blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) during maternal hyperoxia as a method to detect individual placental dysfunction, it is necessary to understand spatiotemporal variations that represent normal placental function. We investigated the effect of maternal position and Braxton-Hicks contractions on estimates obtained from BOLD MRI of the placenta during maternal hyperoxia. METHODS: For 24 uncomplicated singleton pregnancies (gestational age 27-36 weeks), two separate BOLD MRI datasets were acquired, one in the supine and one in the left lateral maternal position. The maternal oxygenation was adjusted as 5 min of room air (21% O), followed by 5 min of 100% FiO. After datasets were corrected for signal non-uniformities and motion, global and regional BOLD signal changes in R* and voxel-wise Time-To-Plateau (TTP) in the placenta were measured. The overall placental and uterine volume changes were determined across time to detect contractions. RESULTS: In mothers without contractions, increases in global placental R* in the supine position were larger compared to the left lateral position with maternal hyperoxia. Maternal position did not alter global TTP but did result in regional changes in TTP. 57% of the subjects had Braxton-Hicks contractions and 58% of these had global placental R* decreases during the contraction. CONCLUSION: Both maternal position and Braxton-Hicks contractions significantly affect global and regional changes in placental R* and regional TTP. This suggests that both factors must be taken into account in analyses when comparing placental BOLD signals over time within and between individuals.
Levitt JJ, Nestor PG, Kubicki M, Lyall AE, Zhang F, Riklin-Raviv T, O Donnell LJ, McCarley RW, Shenton ME, Rathi Y. Miswiring of Frontostriatal Projections in Schizophrenia. Schizophr Bull. 2020;46 (4) :990-8.Abstract
We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P  = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P  = .04) with a left (P  = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P  = .045) driven by differences in left hemisphere limbic (P  = .007) and associative (P  = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.
Ning L, Gagoski B, Szczepankiewicz F, Westin C-F, Rathi Y. Joint RElaxation-Diffusion Imaging Moments to Probe Neurite Microstructure. IEEE Trans Med Imaging. 2020;39 (3) :668-77.Abstract
Joint relaxation-diffusion measurements can provide new insight about the tissue microstructural properties. Most recent methods have focused on inverting the Laplace transform to recover the joint distribution of relaxation-diffusion. However, as is well-known, this problem is notoriously ill-posed and numerically unstable. In this work, we address this issue by directly computing the joint moments of transverse relaxation rate and diffusivity, which can be robustly estimated. To zoom into different parts of the joint distribution, we further enhance our method by applying multiplicative filters to the joint probability density function of relaxation and diffusion and compute the corresponding moments. We propose an approach to use these moments to compute several novel scalar indices to characterize specific properties of the underlying tissue microstructure. Furthermore, for the first time, we propose an algorithm to estimate diffusion signals that are independent of echo time based on the moments of the marginal probability density function of diffusion. We demonstrate its utility in extracting tissue information not contaminated with multiple intra-voxel relaxation rates. We compare the performance of four types of filters that zoom into tissue components with different relaxation and diffusion properties and demonstrate it on an in-vivo human dataset. Experimental results show that these filters are able to characterize heterogeneous tissue microstructure. Moreover, the filtered diffusion signals are also able to distinguish fiber bundles with similar orientations but different relaxation rates. The proposed method thus allows to characterize the neural microstructure information in a robust and unique manner not possible using existing techniques.
Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, et al. SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization. JCO Clin Cancer Inform. 2020;4 :299-309.Abstract
PURPOSE: We present SlicerDMRI, an open-source software suite that enables research using diffusion magnetic resonance imaging (dMRI), the only modality that can map the white matter connections of the living human brain. SlicerDMRI enables analysis and visualization of dMRI data and is aimed at the needs of clinical research users. SlicerDMRI is built upon and deeply integrated with 3D Slicer, a National Institutes of Health-supported open-source platform for medical image informatics, image processing, and three-dimensional visualization. Integration with 3D Slicer provides many features of interest to cancer researchers, such as real-time integration with neuronavigation equipment, intraoperative imaging modalities, and multimodal data fusion. One key application of SlicerDMRI is in neurosurgery research, where brain mapping using dMRI can provide patient-specific maps of critical brain connections as well as insight into the tissue microstructure that surrounds brain tumors. PATIENTS AND METHODS: In this article, we focus on a demonstration of SlicerDMRI as an informatics tool to enable end-to-end dMRI analyses in two retrospective imaging data sets from patients with high-grade glioma. Analyses demonstrated here include conventional diffusion tensor analysis, advanced multifiber tractography, automated identification of critical fiber tracts, and integration of multimodal imagery with dMRI. RESULTS: We illustrate the ability of SlicerDMRI to perform both conventional and advanced dMRI analyses as well as to enable multimodal image analysis and visualization. We provide an overview of the clinical rationale for each analysis along with pointers to the SlicerDMRI tools used in each. CONCLUSION: SlicerDMRI provides open-source and clinician-accessible research software tools for dMRI analysis. SlicerDMRI is available for easy automated installation through the 3D Slicer Extension Manager.
Herz C, Tuncali K, Fedorov A, MacNeil K, Behringer PA, Tokuda J, Mehrtash A, Mousavi P, Kikinis R, Fennessy FM, et al. Open Source Platform for Transperineal In-Bore MRI-Guided Targeted Prostate Biopsy. IEEE Trans Biomed Eng. 2020;67 (2) :565-76.Abstract
OBJECTIVE: Accurate biopsy sampling of the suspected lesions is critical for the diagnosis and clinical management of prostate cancer. Transperineal in-bore MRI-guided prostate biopsy (tpMRgBx) is a targeted biopsy technique that was shown to be safe, efficient, and accurate. Our goal was to develop an open source software platform to support evaluation, refinement, and translation of this biopsy approach. METHODS: We developed SliceTracker, a 3D Slicer extension to support tpMRgBx. We followed modular design of the implementation to enable customization of the interface and interchange of image segmentation and registration components to assess their effect on the processing time, precision, and accuracy of the biopsy needle placement. The platform and supporting documentation were developed to enable the use of software by an operator with minimal technical training to facilitate translation. Retrospective evaluation studied registration accuracy, effect of the prostate segmentation approach, and re-identification time of biopsy targets. Prospective evaluation focused on the total procedure time and biopsy targeting error (BTE). RESULTS: Evaluation utilized data from 73 retrospective and ten prospective tpMRgBx cases. Mean landmark registration error for retrospective evaluation was 1.88 ± 2.63 mm, and was not sensitive to the approach used for prostate gland segmentation. Prospectively, we observed target re-identification time of 4.60 ± 2.40 min and BTE of 2.40 ± 0.98 mm. CONCLUSION: SliceTracker is modular and extensible open source platform for supporting image processing aspects of the tpMRgBx procedure. It has been successfully utilized to support clinical research procedures at our site.

Pages