Publications

2017
Yongxin Chen, Tryphon T Georgiou, Lipeng Ning, and Allen Tannenbaum. 9/2017. “Matricial Wasserstein-1 Distance.” IEEE Control Syst Lett, 1, 1, Pp. 14-9.Abstract
We propose an extension of the Wasserstein 1-metric (W1) for density matrices, matrix-valued density measures, and an unbalanced interpretation of mass transport. We use duality theory and, in particular, a "dual of the dual" formulation of W1. This matrix analogue of the Earth Mover's Distance has several attractive features including ease of computation.
Yoshito Otake, Futishi Yokota, Norio Fukuda, Masaki Takao, Shu Takagi, Naoto Yamamura, Lauren O'Donnell, Westin Carl-Fredrik, Nobuhiko Sugano, and Yoshinobu Sato. 9/2017. “Patient-Specific Skeletal Muscle Fiber Modeling from Structure Tensor Field of Clinical CT Images.” Int Conf Med Image Comput Comput Assist Interv. 20 (Pt1), Pp. 656-63.Abstract
We propose an optimization method for estimating patient- specific muscle fiber arrangement from clinical CT. Our approach first computes the structure tensor field to estimate local orientation, then a geometric template representing fiber arrangement is fitted using a B- spline deformation by maximizing fitness of the local orientation using a smoothness penalty. The initialization is computed with a previously proposed algorithm that takes account of only the muscle’s surface shape. Evaluation was performed using a CT volume (1.0mm3/voxel) and high resolution optical images of a serial cryosection (0.1mm3/voxel). The mean fiber distance error at the initialization of 6.00 mm was decreased to 2.78mm after the proposed optimization for the gluteus maximus muscle, and from 5.28 mm to 3.09 mm for the gluteus medius muscle. The result from 20 patient CT images suggested that the proposed algorithm reconstructed an anatomically more plausible fiber arrangement than the previous method.
Otake-MICCAI2017.pdf
Yongxin Chen, Tryphon Georgiou, Michele Pavon, and Allen Tannenbaum. 9/2017. “Robust Transport over Networks.” IEEE Trans Automat Contr, 62, 9, Pp. 4675-82.Abstract
We consider transportation over a strongly connected, directed graph. The scheduling amounts to selecting transition probabilities for a discrete-time Markov evolution which is designed to be consistent with initial and final marginal constraints on mass transport. We address the situation where initially the mass is concentrated on certain nodes and needs to be transported in a certain time period to another set of nodes, possibly disjoint from the first. The random evolution is selected to be closest to a prior measure on paths in the relative entropy sense-such a construction is known as a Schrödinger bridge between the two given marginals. It may be viewed as an atypical stochastic control problem where the control consists in suitably modifying the prior transition mechanism. The prior can be chosen to incorporate constraints and costs for traversing specific edges of the graph, but it can also be selected to allocate equal probability to all paths of equal length connecting any two nodes (i.e., a uniform distribution on paths). This latter choice for prior transitions relies on the so-called Ruelle-Bowen random walker and gives rise to scheduling that tends to utilize all paths as uniformly as the topology allows. Thus, this Ruelle-Bowen law (Ruelle-Bowen Law) taken as prior, leads to a transportation plan that tends to lessen congestion and ensures a level of robustness. We also show that the distribution Ruelle-Bowen Law on paths, which attains the maximum entropy rate for the random walker given by the topological entropy, can itself be obtained as the time-homogeneous solution of a maximum entropy problem for measures on paths (also a Schrödinger bridge problem, albeit with prior that is not a probability measure). Finally we show that the paradigm of Schrödinger bridges as a mechanism for scheduling transport on networks can be adapted to graphs that are not strongly connected, as well as to weighted graphs. In the latter case, our approach may be used to design a transportation plan which effectively compromises between robustness and other criteria such as cost. Indeed, we explicitly provide a robust transportation plan which assigns maximum probability to minimum cost paths and therefore compares favourably with Optimal Mass Transportation strategies.
Zhang Fan, Wu Weining, Ning Lipeng, McAnulty Gloria, Waber Deborah, Borjan Gagoski, Sarill Kiera, Hamoda Hesham M, Song Yang, Cai Weidong, Yogesh Rathi, and Lauren J O'Donnell. 9/2017. “Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis.” Int Conf Med Image Comput Comput Assist Interv. 20 (Pt1), Pp. 556-65.Abstract
This work presents a supra-threshold fiber cluster (STFC) analysis that leverages the whole brain fiber geometry to enhance sta- tistical group difference analysis. The proposed method consists of (1) a study-specific data-driven tractography parcellation to obtain white matter (WM) tract parcels according to the WM anatomy and (2) a nonparametric permutation-based STFC test to identify significant dif- ferences between study populations (e.g. disease and healthy). The basic idea of our method is that a WM parcel’s neighborhood (parcels with similar WM anatomy) can support the parcel’s statistical significance when correcting for multiple comparisons. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder (ADHD) patients and 29 healthy controls (HCs). Evaluations are conducted using both synthetic and real data. The results indicate that our STFC method gives greater sensitivity in finding group differences in WM tract parcels compared to several traditional multiple comparison correction methods.
Zhang-MICCAI2017.pdf
Lena Maier-Hein, Swaroop Vedula, Stefanis Speidel, Nassir Navab, Ron Kikinis, Matthias Eisenman, Hubertus Feussner, and Germain Forestier. 9/2017. “Surgical Data Science for Next-generation Interventions.” Nature Biomedical Engineering, 1, Pp. 691-6.
Anne-Katrin Giese, Markus D Schirmer, Kathleen L Donahue, Lisa Cloonan, Robert Irie, Stefan Winzeck, Mark JRJ Bouts, Elissa C McIntosh, Steven J Mocking, Adrian V Dalca, Ramesh Sridharan, Huichun Xu, Petrea Frid, Eva Giralt-Steinhauer, Lukas Holmegaard, Jaume Roquer, Johan Wasselius, John W Cole, Patrick F McArdle, Joseph P Broderick, Jordi Jimenez-Conde, Christina Jern, Brett M Kissela, Dawn O Kleindorfer, Robin Lemmens, Arne Lindgren, James F Meschia, Tatjana Rundek, Ralph L Sacco, Reinhold Schmidt, Pankaj Sharma, Agnieszka Slowik, Vincent Thijs, Daniel Woo, Bradford B Worrall, Steven J Kittner, Braxton D Mitchell, Jonathan Rosand, Polina Golland, Ona Wu, and Natalia S Rost. 8/2017. “Design and Rationale for Examining Neuroimaging Genetics in Ischemic Stroke: The MRI-GENIE Study.” Neurol Genet, 3, 5, Pp. e180.Abstract
OBJECTIVE: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. METHODS: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. CONCLUSIONS: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
Karl-Heinz Nenning, Hesheng Liu, Satrajit S Ghosh, Mert R Sabuncu, Ernst Schwartz, and Georg Langs. 8/2017. “Diffeomorphic Functional Brain Surface Alignment: Functional Demons.” Neuroimage, 156, Pp. 456-65.Abstract
Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects.
Fang Ji, Ofer Pasternak, Siwei Liu, Yng Miin Loke, Boon Linn Choo, Saima Hilal, Xin Xu, Mohammad Kamran Ikram, Narayanaswamy Venketasubramanian, Christopher Li-Hsian Chen, and Juan Zhou. 8/2017. “Distinct White Matter Microstructural Abnormalities and Extracellular Water Increases Relate to Cognitive Impairment in Alzheimer's Disease with And without Cerebrovascular Disease.” Alzheimers Res Ther, 9, 1, Pp. 63.Abstract
BACKGROUND: Mixed vascular and neurodegenerative dementia, such as Alzheimer's disease (AD) with concomitant cerebrovascular disease, has emerged as the leading cause of age-related cognitive impairment. The brain white matter (WM) microstructural changes in neurodegeneration well-documented by diffusion tensor imaging (DTI) can originate from brain tissue or extracellular free water changes. The differential microstructural and free water changes in AD with and without cerebrovascular disease, especially in normal-appearing WM, remain largely unknown. To cover these gaps, we aimed to characterize the WM free water and tissue microstructural changes in AD and mixed dementia as well as their associations with cognition using a novel free water imaging method. METHODS: We compared WM free water and free water-corrected DTI measures as well as white matter hyperintensity (WMH) in patients with AD with and without cerebrovascular disease, patients with vascular dementia, and age-matched healthy control subjects. RESULTS: The cerebrovascular disease groups had higher free water than the non-cerebrovascular disease groups. Importantly, besides the cerebrovascular disease groups, patients with AD without cerebrovascular disease also had increased free water in normal-appearing WM compared with healthy control subjects, reflecting mild vascular damage. Such free water increases in WM or normal-appearing WM (but not WMH) contributed to dementia severity. Whole-brain voxel-wise analysis revealed a close association between widespread free water increases and poorer attention, executive functioning, visual construction, and motor performance, whereas only left hemispheric free water increases were related to language deficits. Moreover, compared with the original DTI metrics, the free water-corrected DTI metric revealed tissue damage-specific (frontal and occipital) microstructural differences between the cerebrovascular disease and non-cerebrovascular disease groups. In contrast to both lobar and subcortical/brainstem free water increases, only focal lobar microstructural damage was associated with poorer cognitive performance. CONCLUSIONS: Our findings suggest that free water analysis isolates probable mild vascular damage from WM microstructural alterations and underscore the importance of normal-appearing WM changes underlying cognitive and functional impairment in AD with and without cerebrovascular disease. Further developed, the combined free water and tissue neuroimaging assays could help in differential diagnosis, treatment planning, and disease monitoring of patients with mixed dementia.
Lipeng Ning, Kawin Setsompop, Carl-Fredrik Westin, and Yogesh Rathi. 8/2017. “New Insights about Time-varying Diffusivity and its Estimation from Diffusion MRI.” Magn Reson Med, 78, 2, Pp. 763-74.Abstract

PURPOSE: Characterizing the relation between the applied gradient sequences and the measured diffusion MRI signal is important for estimating the time-dependent diffusivity, which provides important information about the microscopic tissue structure. THEORY AND METHODS: In this article, we extend the classical theory of Stepišnik for measuring time-dependent diffusivity under the Gaussian phase approximation. In particular, we derive three novel expressions which represent the diffusion MRI signal in terms of the mean-squared displacement, the instantaneous diffusivity, and the velocity autocorrelation function. We present the explicit signal expressions for the case of single diffusion encoding and oscillating gradient spin-echo sequences. Additionally, we also propose three different models to represent time-varying diffusivity and test them using Monte-Carlo simulations and in vivo human brain data. RESULTS: The time-varying diffusivities are able to distinguish the synthetic structures in the Monte-Carlo simulations. There is also strong statistical evidence about time-varying diffusivity from the in vivo human data set. CONCLUSION: The proposed theory provides new insights into our understanding of the time-varying diffusivity using different gradient sequences. The proposed models for representing time-varying diffusivity can be utilized to study time-varying diffusivity using in vivo human brain diffusion MRI data. 

Yongxin Chen, Filemon Dela Cruz, Romeil Sandhu, Andrew L Kung, Prabhjot Mundi, Joseph O Deasy, and Allen Tannenbaum. 8/2017. “Pediatric Sarcoma Data Forms a Unique Cluster Measured via the Earth Mover's Distance.” Sci Rep, 7, 1, Pp. 7035.Abstract
In this note, we combined pediatric sarcoma data from Columbia University with adult sarcoma data collected from TCGA, in order to see if one can automatically discern a unique pediatric cluster in the combined data set. Using a novel clustering pipeline based on optimal transport theory, this turned out to be the case. The overall methodology may find uses for the classification of data from other biological networking problems.
Roxana G Burciu, Edward Ofori, Derek B Archer, Samuel S Wu, Ofer Pasternak, Nikolaus R McFarland, Michael S Okun, and David E Vaillancourt. 8/2017. “Progression Marker of Parkinson's Disease: A 4-year Multi-site Imaging Study.” Brain, 140, 8, Pp. 2183-92.Abstract
Progression markers of Parkinson's disease are crucial for successful therapeutic development. Recently, a diffusion magnetic resonance imaging analysis technique using a bitensor model was introduced allowing the estimation of the fractional volume of free water within a voxel, which is expected to increase in neurodegenerative disorders such as Parkinson's disease. Prior work demonstrated that free water in the posterior substantia nigra was elevated in Parkinson's disease compared to controls across single- and multi-site cohorts, and increased over 1 year in Parkinson's disease but not in controls at a single site. Here, the goal was to validate free water in the posterior substantia nigra as a progression marker in Parkinson's disease, and describe the pattern of progression of free water in patients with a 4-year follow-up tested in a multicentre international longitudinal study of de novo Parkinson's disease (http://www.ppmi-info.org/). The analyses examined: (i) 1-year changes in free water in 103 de novo patients with Parkinson's disease and 49 controls; (ii) 2- and 4-year changes in free water in a subset of 46 patients with Parkinson's disease imaged at baseline, 12, 24, and 48 months; (iii) whether 1- and 2-year changes in free water predict 4-year changes in the Hoehn and Yahr scale; and (iv) the relationship between 4-year changes in free water and striatal binding ratio in a subgroup of Parkinson's disease who had undergone both diffusion and dopamine transporter imaging. Results demonstrated that: (i) free water level in the posterior substantia nigra increased over 1 year in de novo Parkinson's disease but not in controls; (ii) free water kept increasing over 4 years in Parkinson's disease; (iii) sex and baseline free water predicted 4-year changes in free water; (iv) free water increases over 1 and 2 years were related to worsening on the Hoehn and Yahr scale over 4 years; and (v) the 4-year increase in free water was associated with the 4-year decrease in striatal binding ratio in the putamen. Importantly, all longitudinal results were consistent across sites. In summary, this study demonstrates an increase over 1 year in free water in the posterior substantia nigra in a large cohort of de novo patients with Parkinson's disease from a multi-site cohort study and no change in healthy controls, and further demonstrates an increase of free water in Parkinson's disease over the course of 4 years. A key finding was that results are consistent across sites and the 1-year and 2-year increase in free water in the posterior substantia nigra predicts subsequent long-term progression on the Hoehn and Yahr staging system. Collectively, these findings demonstrate that free water in the posterior substantia nigra is a valid, progression imaging marker of Parkinson's disease, which may be used in clinical trials of disease-modifying therapies.
Anna S Rydhög, Filip Szczepankiewicz, Ronnie Wirestam, André Ahlgren, Carl-Fredrik Westin, Linda Knutsson, and Ofer Pasternak. 8/2017. “Separating Blood and Water: Perfusion and Free Water Elimination from Diffusion MRI in the Human Brain.” Neuroimage, 156, Pp. 423-34.Abstract
The assessment of the free water fraction in the brain provides important information about extracellular processes such as atrophy and neuroinflammation in various clinical conditions as well as in normal development and aging. Free water estimates from diffusion MRI are assumed to account for freely diffusing water molecules in the extracellular space, but may be biased by other pools of molecules in rapid random motion, such as the intravoxel incoherent motion (IVIM) of blood, where water molecules perfuse in the randomly oriented capillary network. The goal of this work was to separate the signal contribution of the perfusing blood from that of free-water and of other brain diffusivities. The influence of the vascular compartment on the estimation of the free water fraction and other diffusivities was investigated by simulating perfusion in diffusion MRI data. The perfusion effect in the simulations was significant, especially for the estimation of the free water fraction, and was maintained as long as low b-value data were included in the analysis. Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly accounts for water molecules in the capillary blood. Estimation of the model parameters while excluding low b-values reduced the perfusion effect but was highly sensitive to noise. The three-compartment model fit was more stable and additionally, provided an estimation of the volume fraction of the capillary blood compartment. The three-compartment model thus disentangles the effects of free water diffusion and perfusion, which is of major clinical importance since changes in these components in the brain may indicate different pathologies, i.e., those originating from the extracellular space, such as neuroinflammation and atrophy, and those related to the vascular space, such as vasodilation, vasoconstriction and capillary density. Diffusion MRI data acquired from a healthy volunteer, using multiple b-shells, demonstrated an expected non-zero contribution from the blood fraction, and indicated that not accounting for the perfusion effect may explain the overestimation of the free water fraction evinced in previous studies. Finally, the applicability of the method was demonstrated with a dataset acquired using a clinically feasible protocol with shorter acquisition time and fewer b-shells.
Zora Kikinis, Marc Muehlmann, Ofer Pasternak, Sharon Peled, Praveen Kulkarni, Craig Ferris, Sylvain Bouix, Yogesh Rathi, Inga K Koerte, Steve Pieper, Alexander Yarmarkovich, Caryn L Porter, Bruce S Kristal, and Martha E Shenton. 7/2017. “Diffusion Imaging of Mild Traumatic Brain Injury in the Impact Accelerated Rodent Model: A Pilot Study.” Brain Inj, 31, 10, Pp. 1376-81.Abstract
PRIMARY OBJECTIVE: There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN: Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS: TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION: Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.
Markus Nilsson, Samo Lasič, Ivana Drobnjak, Daniel Topgaard, and Carl-Fredrik Westin. 7/2017. “Resolution Limit of Cylinder Diameter Estimation by Diffusion MRI: The Impact of Gradient Waveform and Orientation Dispersion.” NMR Biomed, 30, 7.Abstract
Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.
M Zhang, R Liao, Adrian V Dalca, E Turk, J Luo, E Grant, and Polina Golland. 6/2017. “Frequency Diffeomorphisms for Efficient Image Registration.” Inf Process Med Imaging., 10265, Pp. 559-70.
Adrian V Dalca, K. L. Bouman, William T. Freeman, Natalia S Rost, Mert R Sabuncu, and Polina Golland. 6/2017. “Population Based Image Imputation.” Inf Process Med Imaging., 10265, 659-71.
Lena Maier-Hein, Swaroop Vedula, Stefanis Speidel, Nassir Navab, Ron Kikinis, Adrian Park, Matthias Eisenman, Hubertus Feussner, and Germain Forestier. 6/2017. “Surgical Data Science: Enabling Next-generation Surgery.” Nature Biomedical Engineering. Maier-Hein-NBE2017.pdf
Stephen SF Yip, Chintan Parmar, Daniel Blezek, Raul San Jose Estepar, Steve Pieper, John Kim, and Hugo JWL Aerts. 6/2017. “Application of the 3D Slicer Chest Imaging Platform Segmentation Algorithm for Large Lung Nodule Delineation.” PLoS One, 12, 6, Pp. e0178944.Abstract
PURPOSE: Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers for predicting malignancy of the nodules. Manual segmentation is time consuming and affected by inter-observer variability. We evaluated the robustness and accuracy of a publically available semiautomatic segmentation algorithm that is implemented in the 3D Slicer Chest Imaging Platform (CIP) and compared it with the performance of manual segmentation. METHODS: CT images of 354 manually segmented nodules were downloaded from the LIDC database. Four radiologists performed the manual segmentation and assessed various nodule characteristics. The semiautomatic CIP segmentation was initialized using the centroid of the manual segmentations, thereby generating four contours for each nodule. The robustness of both segmentation methods was assessed using the region of uncertainty (δ) and Dice similarity index (DSI). The robustness of the segmentation methods was compared using the Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the manual and CIP segmentations was computed to estimate the accuracy of the semiautomatic contours. RESULTS: The median computational time of the CIP segmentation was 10 s. The median CIP and manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations were significantly more robust than manual segmentations (median δCIP = 14ml, median dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10-16. The agreement between CIP and manual segmentations had a median DSIAgree of 60%. While 13% (47/354) of the nodules did not require any manual adjustment, minor to substantial manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations were observed to perform poorly (median DSIAgree≈50%) for non-/sub-solid nodules with subtle appearances and poorly defined boundaries. CONCLUSION: Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of nodules owing to its computational efficiency and superior stability compared to manual segmentation. Although manual adjustment is needed for many cases, CIP segmentation provides a preliminary contour for physicians as a starting point.
Ariel D Stock, Sivan Gelb, Ofer Pasternak, Ayal Ben-Zvi, and Chaim Putterman. 6/2017. “The Blood Brain Barrier and Neuropsychiatric Lupus: New Perspectives in Light of Advances in Understanding the Neuroimmune Interface.” Autoimmun Rev, 16, 6, Pp. 612-9.Abstract
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Christian Wachinger, Matthew Brennan, Greg C Sharp, and Polina Golland. 6/2017. “Efficient Descriptor-Based Segmentation of Parotid Glands With Nonlocal Means.” IEEE Trans Biomed Eng, 64, 7, Pp. 1492-1502.Abstract
OBJECTIVE: We introduce descriptor-based segmentation that extends existing patch-based methods by combining intensities, features, and location information. Since it is unclear which image features are best suited for patch selection, we perform a broad empirical study on a multitude of different features. METHODS: We extend nonlocal means segmentation by including image features and location information. We search larger windows with an efficient nearest neighbor search based on kd-trees. We compare a large number of image features. RESULTS: The best results were obtained for entropy image features, which have not yet been used for patch-based segmentation. We further show that searching larger image regions with an approximate nearest neighbor search and location information yields a significant improvement over the bounded nearest neighbor search traditionally employed in patch-based segmentation methods. CONCLUSION: Features and location information significantly increase the segmentation accuracy. The best features highlight boundaries in the image. SIGNIFICANCE: Our detailed analysis of several aspects of nonlocal means-based segmentation yields new insights about patch and neighborhood sizes together with the inclusion of location information. The presented approach advances the state-of-the-art in the segmentation of parotid glands for radiation therapy planning.

Pages