Filip Szczepankiewicz, Samo Lasič, Danielle van Westen, Pia C Sundgren, Elisabet Englund, Carl-Fredrik Westin, Freddy Ståhlberg, Jimmy Lätt, Daniel Topgaard, and Markus Nilsson. 2015. Quantification of Microscopic Diffusion Anisotropy Disentangles Effects of Orientation Dispersion from Microstructure: Applications in Healthy Volunteers and in Brain Tumors. Neuroimage, 104, Pp. 241-52.

The anisotropy of water diffusion in brain tissue is affected by both disease and development. This change can be detected using diffusion MRI and is often quantified by the fractional anisotropy (FA) derived from diffusion tensor imaging (DTI). Although FA is sensitive to anisotropic cell structures, such as axons, it is also sensitive to their orientation dispersion. This is a major limitation to the use of FA as a biomarker for "tissue integrity", especially in regions of complex microarchitecture. In this work, we seek to circumvent this limitation by disentangling the effects of microscopic diffusion anisotropy from the orientation dispersion. The microscopic fractional anisotropy (μFA) and the order parameter (OP) were calculated from the contrast between signal prepared with directional and isotropic diffusion encoding, where the latter was achieved by magic angle spinning of the q-vector (qMAS). These parameters were quantified in healthy volunteers and in two patients; one patient with meningioma and one with glioblastoma. Finally, we used simulations to elucidate the relation between FA and μFA in various micro-architectures. Generally, μFA was high in the white matter and low in the gray matter. In the white matter, the largest differences between μFA and FA were found in crossing white matter and in interfaces between large white matter tracts, where μFA was high while FA was low. Both tumor types exhibited a low FA, in contrast to the μFA which was high in the meningioma and low in the glioblastoma, indicating that the meningioma contained disordered anisotropic structures, while the glioblastoma did not. This interpretation was confirmed by histological examination. We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation dispersion. We suggest that the μFA and OP may complement FA by independently quantifying the microscopic anisotropy and the level of orientation coherence.

Ofer Pasternak, Carl-Fredrik Westin, Brian Dahlben, Sylvain Bouix, and Marek Kubicki. 2015. The Extent of Diffusion MRI Markers of Neuroinflammation and White Matter Deterioration in Chronic Schizophrenia. Schizophr Res, 161, 1, Pp. 113-8.

In a previous study we have demonstrated, using a novel diffusion MRI analysis called free-water imaging, that the early stages of schizophrenia are more likely associated with a neuroinflammatory response and less so with a white matter deterioration or a demyelination process. What is not known is how neuroinflammation and white matter deterioration change along the progression of the disorder. In this study we apply the free-water measures on a population of 29 chronic schizophrenia subjects and compare them with 25 matching controls. Our aim was to compare the extent of free-water imaging abnormalities in chronic subjects with the ones previously obtained for subjects at their first psychotic episode. We find that chronic subjects showed a limited extent of abnormal increase in the volume of the extracellular space, suggesting a less extensive neuroinflammatory response relative to patients at the onset of schizophrenia. At the same time, the chronic schizophrenia subjects had greater extent of reduced fractional anisotropy compared to the previous study, suggesting increased white matter deterioration along the progression of the disease. Our findings substantiate the role of neuroinflammation in the earlier stages of the disorder, and the effect of neurodegeneration that is worsening in the chronic phase.

Tassilo Klein and William M Wells. 2015. RF Ultrasound Distribution-Based Confidence Maps. Int Conf Med Image Comput Comput Assist Interv., 18, Pt2, Pp. 595-602.

Ultrasound is becoming an ever increasingly important modality in medical care. However, underlying physical acquisition principles are prone to image artifacts and result in overall quality variation. Therefore processing medical ultrasound data remains a challenging task. We propose a novel distribution-based measure of assessing the confidence in the signal, which emphasizes uncertainty in attenuated as well as shadow regions. In contrast to the similar recently proposed method that relies on image intensities, the new approach makes use of the enveloped-detected radio-frequency data, facilitating the use of Nakagami speckle statistics. Employing J-divergence as distance measure for the random-walk based algorithm, provides a natural measure of similarity, yielding a more reliable estimate of confidence. For evaluation of the model’s performance, tests are conducted on the application of shadow detection. Additionally, computed maps are presented for different organs such as neck, liver and prostate, showcasing the properties of the model. The probabilistic approach is shown to have beneficial features for image processing tasks. 

Danielle F Pace, Adrian Dalca, Tal Geva, Andrew J Powell, Mehdi H Moghari, and Polina Golland. 2015. Interactive Whole-Heart Segmentation in Congenital Heart Disease. Med Image Comput Comput Assist Interv, 9351, Pp. 80-8.

We present an interactive algorithm to segment the heart chambers and epicardial surfaces, including the great vessel walls, in pediatric cardiac MRI of congenital heart disease. Accurate whole-heart segmentation is necessary to create patient-specific 3D heart models for surgical planning in the presence of complex heart defects. Anatomical variability due to congenital defects precludes fully automatic atlas-based segmentation. Our interactive segmentation method exploits expert segmentations of a small set of short-axis slice regions to automatically delineate the remaining volume using patch-based segmentation. We also investigate the potential of active learning to automatically solicit user input in areas where segmentation error is likely to be high. Validation is performed on four subjects with double outlet right ventricle, a severe congenital heart defect. We show that strategies asking the user to manually segment regions of interest within short-axis slices yield higher accuracy with less user input than those querying entire short-axis slices.

Lipeng Ning, Tryphon T Georgiou, and Allen Tannenbaum. 2015. On Matrix-Valued Monge-Kantorovich Optimal Mass Transport. IEEE Trans Automat Contr, 60, 2, Pp. 373-82.
We present a particular formulation of optimal transport for matrix-valued density functions. Our aim is to devise a geometry which is suitable for comparing power spectral densities of multivariable time series. More specifically, the value of a power spectral density at a given frequency, which in the matricial case encodes power as well as directionality, is thought of as a proxy for a "matrix-valued mass density." Optimal transport aims at establishing a natural metric in the space of such matrix-valued densities which takes into account differences between power across frequencies as well as misalignment of the corresponding principle axes. Thus, our transportation cost includes a cost of transference of power between frequencies together with a cost of rotating the principle directions of matrix densities. The two endpoint matrix-valued densities can be thought of as marginals of a joint matrix-valued density on a tensor product space. This joint density, very much as in the classical Monge-Kantorovich setting, can be thought to specify the transportation plan. Contrary to the classical setting, the optimal transport plan for matrices is no longer supported on a thin zero-measure set.
Sidong Liu, Weidong Cai, Siqi Liu, Fan Zhang, Michael Fulham, Dagan Feng, Sonia Pujol, and Ron Kikinis. 2015. Multimodal Neuroimaging Computing: The Workflows, Methods, and Platforms. Brain Inform, 2, Pp. 181-95.
The last two decades have witnessed the explosive growth in the development and use of noninvasive neuroimaging technologies that advance the research on human brain under normal and pathological conditions. Multimodal neuroimaging has become a major driver of current neuroimaging research due to the recognition of the clinical benefits of multimodal data, and the better access to hybrid devices. Multimodal neuroimaging computing is very challenging, and requires sophisticated computing to address the variations in spatiotemporal resolution and merge the biophysical/biochemical information. We review the current workflows and methods for multimodal neuroimaging computing, and also demonstrate how to conduct research using the established neuroimaging computing packages and platforms.
Vadim Ratner, Liangjia Zhu, Ivan Kolesov, Maiken Nedergaard, Helene Benveniste, and Allen Tannenbaum. 2015. Optimal-mass-transfer-based estimation of glymphatic transport in living brain. Proc SPIE Int Soc Opt Eng, 9413.
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the ’glymphatic pathway’ plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs(1,2). It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach(3) to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data.
Sidong Liu, Weidong Cai, Siqi Liu, Fan Zhang, Michael Fulham, Dagan Feng, Sonia Pujol, and Ron Kikinis. 2015. Multimodal Neuroimaging Computing: A Review of the Applications in Neuropsychiatric Disorders. Brain Inform, 2, Pp. 167-80.
Multimodal neuroimaging is increasingly used in neuroscience research, as it overcomes the limitations of individual modalities. One of the most important applications of multimodal neuroimaging is the provision of vital diagnostic data for neuropsychiatric disorders. Multimodal neuroimaging computing enables the visualization and quantitative analysis of the alterations in brain structure and function, and has reshaped how neuroscience research is carried out. Research in this area is growing exponentially, and so it is an appropriate time to review the current and future development of this emerging area. Hence, in this paper, we review the recent advances in multimodal neuroimaging (MRI, PET) and electrophysiological (EEG, MEG) technologies, and their applications to the neuropsychiatric disorders. We also outline some future directions for multimodal neuroimaging where researchers will design more advanced methods and models for neuropsychiatric research.
Lipeng Ning, Frederik Laun, Yaniv Gur, Edward R DiBella, Samuel Deslauriers-Gauthier, Thinhinane Megherbi, Aurobrata Ghosh, Mauro Zucchelli, Gloria Menegaz, Rutger Fick, Samuel St-Jean, Michael Paquette, Ramón Aranda, Maxime Descoteaux, Rachid Deriche, Lauren O Donnell, and Yogesh Rathi. 2015. Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use?. Med Image Anal, 26, 1, Pp. 316-31.
Diffusion magnetic resonance imaging (dMRI) is the modality of choice for investigating in-vivo white matter connectivity and neural tissue architecture of the brain. The diffusion-weighted signal in dMRI reflects the diffusivity of water molecules in brain tissue and can be utilized to produce image-based biomarkers for clinical research. Due to the constraints on scanning time, a limited number of measurements can be acquired within a clinically feasible scan time. In order to reconstruct the dMRI signal from a discrete set of measurements, a large number of algorithms have been proposed in recent years in conjunction with varying sampling schemes, i.e., with varying b-values and gradient directions. Thus, it is imperative to compare the performance of these reconstruction methods on a single data set to provide appropriate guidelines to neuroscientists on making an informed decision while designing their acquisition protocols. For this purpose, the SPArse Reconstruction Challenge (SPARC) was held along with the workshop on Computational Diffusion MRI (at MICCAI 2014) to validate the performance of multiple reconstruction methods using data acquired from a physical phantom. A total of 16 reconstruction algorithms (9 teams) participated in this community challenge. The goal was to reconstruct single b-value and/or multiple b-value data from a sparse set of measurements. In particular, the aim was to determine an appropriate acquisition protocol (in terms of the number of measurements, b-values) and the analysis method to use for a neuroimaging study. The challenge did not delve on the accuracy of these methods in estimating model specific measures such as fractional anisotropy (FA) or mean diffusivity, but on the accuracy of these methods to fit the data. This paper presents several quantitative results pertaining to each reconstruction algorithm. The conclusions in this paper provide a valuable guideline for choosing a suitable algorithm and the corresponding data-sampling scheme for clinical neuroscience applications.