Binder P, Batmanghelich KN, Estepar RSJ, Golland P. Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort. Int Conf Med Image Comput Comput Assist Interv. Workshop on Machine Learning in Medical Imaging. 2016;19 (WS) :180-7.
Fan Z, Peter S, Cai W, Song Y, Verma R, Carl-Fredrik W, O'Donnell LJ. Fiber Clustering Based White Matter Connectivity Analysis for Prediction of Autism Spectrum Disorder using Diffusion Tensor Imaging. IEEE Int Symp Biomed Imaging. 2016.Abstract
Autism Spectrum Disorder (ASD) has been suggested to associate with alterations in brain connectivity. In this study, we focus on a fiber clustering tractography segmentation strategy to observe white matter connectivity alterations in ASD. Compared to another popular parcellation-based approach for tractography segmentation based on cortical regions, we hypothesized that the clustering-based method could provide a more anatomically correspondent division of white matter. We applied this strategy to conduct a population-based group statistical analysis for the automated prediction of ASD. We obtained a maximum classification accuracy of 81.33% be- tween ASDs and controls, compared to the results of 78.00% from the parcellation-based method.
Zhang ISBI 2016
Bartling S, Jakab M, Kikinis R. CT-based Atlas of the Ear. Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; 2016. Publisher's VersionAbstract
The Surgical Planning Laboratory at Brigham and Women's Hospital, Harvard Medical School, developed the SPL Ear Atlas. The atlas was derived from a high-resolution flat-panel computed tomography (CT) scan (aprox 140 µm high contrast resultion), using semi-automated image segmentation and three-dimensional reconstruction techniques [Gupta, Bartling, et al. AJNR Am J Neuroradiol. 2004.]. The current version consists of: 1. the original CT scan; 2. a set of detailed label maps; 3. a set of three-dimensional models of the labeled anatomical structures; 4. mrb (Medical Reality Bundle) file archive that contains the mrml scene file and all data for loading into Slicer 4 for displaying the volumes in 3D Slicer version 4.0 or greater; 5. several pre-defined 3D-views (“anatomy teaching files”). The SPL Ear Atlas provides important reference information for surgical planning, anatomy teaching, and template driven segmentation. Visualization of the data requires 3D Slicer. This software package can be downloaded from here. We are pleased to make this atlas available to our colleagues for free download. Please note that the data is being distributed under the Slicer license. By downloading these data, you agree to acknowledge our contribution in any of your publications that result form the use of this atlas. This work is funded as part of the Neuroimaging Analysis Center, grant number P41 RR013218, by the NIH's National Center for Research Resources (NCRR) and grant number P41 EB015902, by the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Google Faculty Research Award.
Kapur T, Tempany CM. Proceedings of the 8th Image Guided Therapy Workshop. 2016;8 :1-68. 2016 IGT Workshop Proceedings
Langs G, Wang D, Golland P, Mueller S, Pan R, Sabuncu MR, Sun W, Li K, Liu H. Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability. Cereb Cortex. 2016;26 (10) :4004-14.Abstract
The connectivity architecture of the human brain varies across individuals. Mapping functional anatomy at the individual level is challenging, but critical for basic neuroscience research and clinical intervention. Using resting-state functional connectivity, we parcellated functional systems in an "embedding space" based on functional characteristics common across the population, while simultaneously accounting for individual variability in the cortical distribution of functional units. The functional connectivity patterns observed in resting-state data were mapped in the embedding space and the maps were aligned across individuals. A clustering algorithm was performed on the aligned embedding maps and the resulting clusters were transformed back to the unique anatomical space of each individual. This novel approach identified functional systems that were reproducible within subjects, but were distributed across different anatomical locations in different subjects. Using this approach for intersubject alignment improved the predictability of individual differences in language laterality when compared with anatomical alignment alone. Our results further revealed that the strength of association between function and macroanatomy varied across the cortex, which was strong in unimodal sensorimotor networks, but weak in association networks.
Zhang M, Wells WM, Golland P. Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations. Med Image Comput Comput Assist Interv. 2016;9902 :166-73.Abstract
Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).
Dalca AV, Bobu A, Rost NS, Golland P. Patch-Based Discrete Registration of Clinical Brain Images. Patch Based Tech Med Imaging. 2016;9993 :60-67.Abstract
We introduce a method for registration of brain images acquired in clinical settings. The algorithm relies on three-dimensional patches in a discrete registration framework to estimate correspondences. Clinical images present significant challenges for computational analysis. Fast acquisition often results in images with sparse slices, severe artifacts, and variable fields of view. Yet, large clinical datasets hold a wealth of clinically relevant information. Despite significant progress in image registration, most algorithms make strong assumptions about the continuity of image data, failing when presented with clinical images that violate these assumptions. In this paper, we demonstrate a non-rigid registration method for aligning such images. The method explicitly models the sparsely available image information to achieve robust registration. We demonstrate the algorithm on clinical images of stroke patients. The proposed method outperforms state of the art registration algorithms and avoids catastrophic failures often caused by these images. We provide a freely available open source implementation of the algorithm.
Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RSE, Adcock RA, Wood SJ, et al. Disrupted Salience Network Functional Connectivity and White-Matter Microstructure in Persons at Risk For Psychosis: Findings from the LYRIKS Study. Psychol Med. 2016;46 (13) :2771-83.Abstract

BACKGROUND: Salience network (SN) dysconnectivity has been hypothesized to contribute to schizophrenia. Nevertheless, little is known about the functional and structural dysconnectivity of SN in subjects at risk for psychosis. We hypothesized that SN functional and structural connectivity would be disrupted in subjects with At-Risk Mental State (ARMS) and would be associated with symptom severity and disease progression. METHOD: We examined 87 ARMS and 37 healthy participants using both resting-state functional magnetic resonance imaging and diffusion tensor imaging. Group differences in SN functional and structural connectivity were examined using a seed-based approach and tract-based spatial statistics. Subject-level functional connectivity measures and diffusion indices of disrupted regions were correlated with CAARMS scores and compared between ARMS with and without transition to psychosis. RESULTS: ARMS subjects exhibited reduced functional connectivity between the left ventral anterior insula and other SN regions. Reduced fractional anisotropy (FA) and axial diffusivity were also found along white-matter tracts in close proximity to regions of disrupted functional connectivity, including frontal-striatal-thalamic circuits and the cingulum. FA measures extracted from these disrupted white-matter regions correlated with individual symptom severity in the ARMS group. Furthermore, functional connectivity between the bilateral insula and FA at the forceps minor were further reduced in subjects who transitioned to psychosis after 2 years. CONCLUSIONS: Our findings support the insular dysconnectivity of the proximal SN hypothesis in the early stages of psychosis. Further developed, the combined structural and functional SN assays may inform the prognosis of persons at-risk for psychosis.

Gao Y, Ratner V, Zhu L, Diprima T, Kurc T, Tannenbaum A, Saltz J. Hierarchical Nucleus Segmentation in Digital Pathology Images. Proc SPIE Int Soc Opt Eng. 2016;9791.Abstract

Extracting nuclei is one of the most actively studied topic in the digital pathology researches. Most of the studies directly search the nuclei (or seeds for the nuclei) from the finest resolution available. While the richest information has been utilized by such approaches, it is sometimes difficult to address the heterogeneity of nuclei in different tissues. In this work, we propose a hierarchical approach which starts from the lower resolution level and adaptively adjusts the parameters while progressing into finer and finer resolution. The algorithm is tested on brain and lung cancers images from The Cancer Genome Atlas data set.

Gao Y, Liu W, Arjun S, Zhu L, Ratner V, Kurc T, Saltz J, Tannenbaum A. Multi-scale Learning Based Segmentation of Glands in Digital Colonrectal Pathology Images. Proc SPIE Int Soc Opt Eng. 2016;9791.Abstract

Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

Sandhu RS, Georgiou TT, Tannenbaum AR. Ricci Curvature: An Economic Indicator for Market Fragility and Systemic Risk. Sci Adv. 2016;2 (5) :e1501495.Abstract

Quantifying the systemic risk and fragility of financial systems is of vital importance in analyzing market efficiency, deciding on portfolio allocation, and containing financial contagions. At a high level, financial systems may be represented as weighted graphs that characterize the complex web of interacting agents and information flow (for example, debt, stock returns, and shareholder ownership). Such a representation often turns out to provide keen insights. We show that fragility is a system-level characteristic of "business-as-usual" market behavior and that financial crashes are invariably preceded by system-level changes in robustness. This was done by leveraging previous work, which suggests that Ricci curvature, a key geometric feature of a given network, is negatively correlated to increases in network fragility. To illustrate this insight, we examine daily returns from a set of stocks comprising the Standard and Poor's 500 (S&P 500) over a 15-year span to highlight the fact that corresponding changes in Ricci curvature constitute a financial "crash hallmark." This work lays the foundation of understanding how to design (banking) systems and policy regulations in a manner that can combat financial instabilities exposed during the 2007-2008 crisis.

Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, Grant G, Marx CE, Morey RA, Flashman LA, et al. Inter-site and Inter-scanner Diffusion MRI Data Harmonization. Neuroimage. 2016;135 :311-23.Abstract

We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.

Chen Y, Oh JH, Sandhu R, Lee S, Deasy JO, Tannenbaum A. Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016;2016 :1302-6.Abstract

More than half of all cancer patients receive radiotherapy in their treatment process. However, our understanding of abnormal transcriptional responses to radiation remains poor. In this study, we employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This was performed for IR, UV, and mock datasets, separately. The difference curvature value between IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate the extent to which the gene responds to radiation. We found that in comparison of the top 200 genes identified from IR and UV graphs, about 20~30% genes were overlapping. Through gene ontology enrichment analysis, we found that the metabolic-related biological process was highly associated with both IR and UV radiation exposure.

Binder P, Batmanghelich NK, Estepar RSJ, Golland P. Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort. Mach Learn Med Imaging. 2016;10019 :180-7.Abstract

Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disorder (COPD), a devastating lung disease often caused by smoking. Emphysema appears on Computed Tomography (CT) scans as a variety of textures that correlate with disease subtypes. It has been shown that the disease subtypes and textures are linked to physiological indicators and prognosis, although neither is well characterized clinically. Most previous computational approaches to modeling emphysema imaging data have focused on supervised classification of lung textures in patches of CT scans. In this work, we describe a generative model that jointly captures heterogeneity of disease subtypes and of the patient population. We also describe a corresponding inference algorithm that simultaneously discovers disease subtypes and population structure in an unsupervised manner. This approach enables us to create image-based descriptors of emphysema beyond those that can be identified through manual labeling of currently defined phenotypes. By applying the resulting algorithm to a large data set, we identify groups of patients and disease subtypes that correlate with distinct physiological indicators.

Tax CMW, Dela Haije T, Fuster A, Westin C-F, Viergever MA, Florack L, Leemans A. Sheet Probability Index (SPI): Characterizing the Geometrical Organization of the White Matter with Diffusion MRI. Neuroimage. 2016;142 :260-79.Abstract

The question whether our brain pathways adhere to a geometric grid structure has been a popular topic of debate in the diffusion imaging and neuroscience societies. Wedeen et al. (2012a, b) proposed that the brain's white matter is organized like parallel sheets of interwoven pathways. Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate the condition for a sheet structure to exist. Note that this condition is not related to the presence or absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To quantify the existence of sheet structure, we present a novel framework to compute the sheet probability index (SPI), which reflects the presence of sheet structure in discrete orientation data (e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability to detect sheet structure. In real diffusion MRI data experiments we can identify various regions where the data supports sheet structure (high SPI values), but also areas where the data does not support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several areas with high SPI values were found to be consistent across subjects, across multiple data sets obtained with different scanners, resolutions, and degrees of diffusion weighting, and across various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect true axons, our results would therefore indicate that pathways do not form sheet structures at every crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet structure location, extent, and orientation could potentially serve as new structural features of brain tissue. The proposed method can be extended to quantify sheet structure in directional data obtained with techniques other than diffusion MRI, which is essential for further validation.

Liao R, Turk EA, Zhang M, Luo J, Grant PE, Adalsteinsson E, Golland P. Temporal Registration in In-Utero Volumetric MRI Time Series, in Int Conf Med Image Comput Comput Assist Interv. Vol 19. ; 2016 :54-62.Abstract

We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corresponding hidden Markov model (HMM) yields an estimation algorithm that only has to account for relatively small motion between consecutive frames. We demonstrate the utility of the temporal model by showing that its use improves the accuracy of the segmentation propagation through temporal registration. Our results suggest that the proposed model captures accurately the temporal dynamics of deformations in in-utero MRI time series.

Bersvendsen J, Toews M, Danudibroto A, Wells III WM, Urheim S, San José Estépar R, Samset E. Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences. Proc SPIE Int Soc Opt Eng. 2016;9790.Abstract

Registration of multiple 3D ultrasound sectors in order to provide an extended field of view is important for the appreciation of larger anatomical structures at high spatial and temporal resolution. In this paper, we present a method for fully automatic spatio-temporal registration between two partially overlapping 3D ultrasound sequences. The temporal alignment is solved by aligning the normalized cross correlation-over-time curves of the sequences. For the spatial alignment, corresponding 3D Scale Invariant Feature Transform (SIFT) features are extracted from all frames of both sequences independently of the temporal alignment. A rigid transform is then calculated by least squares minimization in combination with random sample consensus. The method is applied to 16 echocardiographic sequences of the left and right ventricles and evaluated against manually annotated temporal events and spatial anatomical landmarks. The mean distances between manually identified landmarks in the left and right ventricles after automatic registration were (mean ± SD) 4.3 ± 1.2 mm compared to a reference error of 2.8 ± 0.6 mm with manual registration. For the temporal alignment, the absolute errors in valvular event times were 14.4 ± 11.6 ms for Aortic Valve (AV) opening, 18.6 ± 16.0 ms for AV closing, and 34.6 ± 26.4 ms for mitral valve opening, compared to a mean inter-frame time of 29 ms.

Toews M, Wells III WM. Invariant Feature-Based Analysis of Medical Images: An Overview, in IEEE Int Symp Biomed Imaging. ; 2016.
Fan Q, Witzel T, Nummenmaa A, Van Dijk KRA, Van Horn JD, Drews MK, Somerville LH, Sheridan MA, Santillana RM, Snyder J, et al. MGH-USC Human Connectome Project Datasets with Ultra-high b-value Diffusion MRI. Neuroimage. 2016;124 (Pt B) :1108-14.Abstract
The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.
Kolesov I, Lee J, Sharp G, Vela P, Tannenbaum A. A Stochastic Approach to Diffeomorphic Point Set Registration with Landmark Constraints. IEEE Trans Pattern Anal Mach Intell. 2016;38 (2) :238-51.Abstract
This work presents a deformable point set registration algorithm that seeks an optimal set of radial basis functions to describe the registration. A novel, global optimization approach is introduced composed of simulated annealing with a particle filter based generator function to perform the registration. It is shown how constraints can be incorporated into this framework. A constraint on the deformation is enforced whose role is to ensure physically meaningful fields (i.e., invertible). Further, examples in which landmark constraints serve to guide the registration are shown. Results on 2D and 3D data demonstrate the algorithm's robustness to noise and missing information.