Publications

2016
Pasternak O, Kubicki M, Shenton ME. In vivo Imaging of Neuroinflammation in Schizophrenia. Schizophr Res. 2016;173 (3) :200-12.Abstract

In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.

Kapur T, Pieper S, Fedorov A, Fillion-Robin J-C, Halle M, O'Donnell L, Lasso A, Ungi T, Pinter C, Finet J, et al. Increasing the Impact of Medical Image Computing using Community-based Open-access Hackathons: The NA-MIC and 3D Slicer Experience. Med Image Anal. 2016;33 :176-80.Abstract

The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision.

Ning L, Setsompop K, Michailovich O, Makris N, Shenton ME, Westin C-F, Rathi Y. A Joint Compressed-sensing and Super-resolution Approach for Very High-resolution Diffusion Imaging. Neuroimage. 2016;125 :386-400.Abstract

Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time.

Szczepankiewicz F, van Westen D, Englund E, Westin C-F, Ståhlberg F, Lätt J, Sundgren PC, Nilsson M. The Link between Diffusion MRI and Tumor Heterogeneity: Mapping Cell Eccentricity and Density by Diffusional Variance Decomposition (DIVIDE). Neuroimage. 2016;142 :522-32.Abstract

The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MKT), and DIVIDE was used to decompose MKT into components caused by microscopic anisotropy (MKA) and isotropic heterogeneity (MKI). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MKA correlated with cell eccentricity (r=0.95, p<10(-7)) and MKI with the cell density variance (r=0.83, p<10(-3)). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10(-3)) and microscopic scale (μFA, r=0.93, p<10(-6)). A multiple regression analysis showed that the conventional MKT parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MKA was associated only to cell eccentricity, and MKI only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MKA=1.11±0.33 vs MKI=0.44±0.20 (p<10(-3)), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MKI=0.57±0.30 vs MKA=0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale.

Zhang F, Song Y, Cai W, Liu S, Liu S, Pujol S, Kikinis R, Xia Y, Fulham M, Feng D. Pairwise Latent Semantic Association for Similarity Computation in Medical Imaging. IEEE Trans Biomed Eng. 2016;63 (5) :1058-69.Abstract

Retrieving medical images that present similar diseases is an active research area for diagnostics and therapy. However, it can be problematic given the visual variations between anatomical structures. In this paper, we propose a new feature extraction method for similarity computation in medical imaging. Instead of the low-level visual appearance, we design a CCA-PairLDA feature representation method to capture the similarity between images with high-level semantics. First, we extract the PairLDA topics to represent an image as a mixture of latent semantic topics in an image pair context. Second, we generate a CCA-correlation model to represent the semantic association between an image pair for similarity computation. While PairLDA adjusts the latent topics for all image pairs, CCA-correlation helps to associate an individual image pair. In this way, the semantic descriptions of an image pair are closely correlated, and naturally correspond to similarity computation between images. We evaluated our method on two public medical imaging datasets for image retrieval and showed improved performance.

Batmanghelich NK, Dalca A, Quon G, Sabuncu M, Golland P. Probabilistic Modeling of Imaging, Genetics and Diagnosis. IEEE Trans Med Imaging. 2016;35 (7) :1765-79.Abstract

We propose a unified Bayesian framework for detecting genetic variants associated with disease by exploiting image-based features as an intermediate phenotype. The use of imaging data for examining genetic associations promises new directions of analysis, but currently the most widely used methods make sub-optimal use of the richness that these data types can offer. Currently, image features are most commonly selected based on their relevance to the disease phenotype. Then, in a separate step, a set of genetic variants is identified to explain the selected features. In contrast, our method performs these tasks simultaneously in order to jointly exploit information in both data types. The analysis yields probabilistic measures of clinical relevance for both imaging and genetic markers. We derive an efficient approximate inference algorithm that handles the high dimensionality of image and genetic data. We evaluate the algorithm on synthetic data and demonstrate that it outperforms traditional models. We also illustrate our method on Alzheimer's Disease Neuroimaging Initiative data.

Westin C-F, Knutsson H, Pasternak O, Szczepankiewicz F, Özarslan E, van Westen D, Mattisson C, Bogren M, O'Donnell LJ, Kubicki M, et al. Q-space Trajectory Imaging for Multidimensional Diffusion MRI of the Human Brain. Neuroimage. 2016;135 :345-62.Abstract

This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture.

Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos XF, Petrides M, et al. Situating the Default-mode Network along a Principal Gradient of Macroscale Cortical Organization. Proc Natl Acad Sci U S A. 2016;113 (44) :12574-9.Abstract

Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.

Zhang M, Golland P. Statistical Shape Analysis: From Landmarks to Diffeomorphisms. Med Image Anal. 2016;33 :155-8.Abstract

We offer a blazingly brief review of evolution of shape analysis methods in medical imaging. As the representations and the statistical models grew more sophisticated, the problem of shape analysis has been gradually redefined to accept images rather than binary segmentations as a starting point. This transformation enabled shape analysis to take its rightful place in the arsenal of tools for extracting and understanding patterns in large clinical image sets. We speculate on the future developments in shape analysis and potential applications that would bring this mathematically rich area to bear on clinical practice.

Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin C-F. The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy. Brain Struct Funct. 2016;221 (9) :4705-4721.Abstract

We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.

Chen Z, Tie Y, Olubiyi O, O'Donnell L. Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers using Two-Tensor Unscented Kalman Filter Tractography. Int J Comput Assist Radiol Surg. 2016;11 (8) :1475-86. PubMedAbstract

PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers.
METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts.
RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]).
CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.

2015
Pace DF, Dalca AV, Geva T, Powell AJ, Moghari MH, Golland P. Interactive Whole-Heart Segmentation in Congenital Heart Disease. Med Image Comput Comput Assist Interv. 2015;9351 :80-8.Abstract
We present an interactive algorithm to segment the heart chambers and epicardial surfaces, including the great vessel walls, in pediatric cardiac MRI of congenital heart disease. Accurate whole-heart segmentation is necessary to create patient-specific 3D heart models for surgical planning in the presence of complex heart defects. Anatomical variability due to congenital defects precludes fully automatic atlas-based segmentation. Our interactive segmentation method exploits expert segmentations of a small set of short-axis slice regions to automatically delineate the remaining volume using patch-based segmentation. We also investigate the potential of active learning to automatically solicit user input in areas where segmentation error is likely to be high. Validation is performed on four subjects with double outlet right ventricle, a severe congenital heart defect. We show that strategies asking the user to manually segment regions of interest within short-axis slices yield higher accuracy with less user input than those querying entire short-axis slices.
Lou Y, Tannenbaum A. Inter-modality Deformable Registration. In: Jia, X., and Jiang, S.B. (Eds.). (2015). Graphics Processing Unit-Based High Performance Computing in Radiation Therapy. Vol. Ch 10. CRC Press ; 2015.Abstract
Deformable image registration (DIR) is one of the major problems in medical image processing, such as dose calculation [18], treatment planning [33] and scatter removal of cone beam CT (CBCT) [22]. It is of prime importance to establish a pixel-to-pixel correspondence between two images in many clinical scenarios. For instance, registration of a CT image to MRI of a patient taken at different time can provide complementary diagnostic information. For applications as such, since the deformation of the patient anatomy cannot be represented by a rigid transform, DIR is almost the sole means to establish this mapping. DIR can be generally categorized into intra-modality and inter-modality, or multi-modality. While intra-modality DIR can be easily handled by conventional intensity-based methods [11, 30], intermodality DIR problems are still far from being satisfactory. Yet, since different imaging modalities usually provide their unique angles to reveal patient anatomy and delineate microscopic disease, intermodality registration plays a key role to combine the information from multiple modalities to facilitate diagnostics and treatment of a certain disease.
Lou Y, Tannenbaum A. Inter-modality Deformable Registration. In: Jia, X., and Jiang, S.B. (Eds.). (2015). Graphics Processing Unit-Based High Performance Computing in Radiation Therapy. Vol. Ch 10. CRC Press ; 2015.Abstract
Deformable image registration (DIR) is one of the major problems in medical image processing, such as dose calculation [18], treatment planning [33] and scatter removal of cone beam CT (CBCT) [22]. It is of prime importance to establish a pixel-to-pixel correspondence between two images in many clinical scenarios. For instance, registration of a CT image to MRI of a patient taken at different time can provide complementary diagnostic information. For applications as such, since the deformation of the patient anatomy cannot be represented by a rigid transform, DIR is almost the sole means to establish this mapping. DIR can be generally categorized into intra-modality and inter-modality, or multi-modality. While intra-modality DIR can be easily handled by conventional intensity-based methods [11, 30], intermodality DIR problems are still far from being satisfactory. Yet, since different imaging modalities usually provide their unique angles to reveal patient anatomy and delineate microscopic disease, intermodality registration plays a key role to combine the information from multiple modalities to facilitate diagnostics and treatment of a certain disease.
Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng DD. Multi-Phase Feature Representation Learning for Neurodegenerative Disease Diagnosis. Artificial Life and Computational Intelligence. 2015;LNAI 8955 :350-9.Abstract
Feature learning with high dimensional neuroimaging features has been explored for the applications on neurodegenerative diseases. Low-dimensional biomarkers, such as mental status test scores and cerebrospinal fluid level, are essential in clinical diagnosis of neurological disorders, because they could be simple and effective for the clinicians to assess the disorder’s progression and severity. Rather than only using the low-dimensional biomarkers as inputs for decision making systems, we believe that such low-dimensional biomarkers can be used for enhancing the feature learning pipeline. In this study, we proposed a novel feature representation learning framework, Multi-Phase Feature Representation (MPFR), with low-dimensional biomarkers embedded. MPFR learns high-level neuroimaging features by extracting the associations between the low-dimensional biomarkers and the highdimensional neuroimaging features with a deep neural network. We validated the proposed framework using the Mini-Mental-State-Examination (MMSE) scores as a low-dimensional biomarker and multi-modal neuroimaging data as the high-dimensional neuroimaging features from the ADNI baseline cohort. The proposed approach outperformed the original neural network in both binary and ternary Alzheimer’s disease classification tasks.
Liu ACALCI 2015
Klein T, Wells III WM. RF Ultrasound Distribution-Based Confidence Maps. Int Conf Med Image Comput Comput Assist Interv. 2015;18 (Pt2) :595-602.Abstract
Ultrasound is becoming an ever increasingly important modality in medical care. However, underlying physical acquisition principles are prone to image artifacts and result in overall quality variation. Therefore processing medical ultrasound data remains a challenging task. We propose a novel distribution-based measure of assessing the confidence in the signal, which emphasizes uncertainty in attenuated as well as shadow regions. In contrast to the similar recently proposed method that relies on image intensities, the new approach makes use of the enveloped-detected radio-frequency data, facilitating the use of Nakagami speckle statistics. Employing J-divergence as distance measure for the random-walk based algorithm, provides a natural measure of similarity, yielding a more reliable estimate of confidence. For evaluation of the model’s performance, tests are conducted on the application of shadow detection. Additionally, computed maps are presented for different organs such as neck, liver and prostate, showcasing the properties of the model. The probabilistic approach is shown to have beneficial features for image processing tasks.
 
Klein MICCAI 2015
King F, Jayender J, Pieper S, Kapur T, Lasso A, Fichtinger G. An Immersive Virtual Reality Environment for Diagnostic Imaging. Int Conf Med Image Comput Comput Assist Interv. 2015;18(WS). King MICCAI WS 2015
Talos I-F, Jakab M, Kikinis R. CT-based Atlas of the Abdomen. Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; 2015. Publisher's VersionAbstract
The Surgical Planning Laboratory at Brigham and Women's Hospital, Harvard Medical School, developed the SPL Abdominal Atlas. The atlas was derived from a computed tomography (CT) scan, using semi-automated image segmentation and three-dimensional reconstruction techniques. The current version consists of: 1. the original CT scan; 2. a set of detailed label maps; 3. a set of three-dimensional models of the labeled anatomical structures; 4. a mrml-file that allows loading all of the data into the 3D Slicer for visualization (see the tutorial associated with the atlas); 5. several pre-defined 3D-views (“anatomy teaching files”). The SPL Abdominal Atlas provides important reference information for surgical planning, anatomy teaching, and template driven segmentation. Visualization of the data requires Slicer 3. This software package can be downloaded from here. We are pleased to make this atlas available to our colleagues for free download. Please note that the data is being distributed under the Slicer license. By downloading these data, you agree to acknowledge our contribution in any of your publications that result form the use of this atlas. 
The Slicer4 version archived in a mrb (Medical Reality Bundle) file that contains the mrml scene file and all data for loading into Slicer 4 for displaying the volumes in 3D Slicer version 4.0 or greater, available for download.
This work is funded as part of the Neuroimaging Analysis Center, grant number P41 RR013218, by the NIH's National Center for Research Resources (NCRR) and grant number P41 EB015902, by the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Google Faculty Research Award.
Contributors: Matthew D'Artista, Alex Kikinis, Tobias Schmidt, Svenja van der Gaag.
This atlas maybe viewed with our Open Anatomy Browser.
Richolt J, Jakab M, Kikinis R. MRI-based Atlas of the Knee. Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; 2015. Publisher's VersionAbstract
The Surgical Planning Laboratory at Brigham and Women's Hospital, Harvard Medical School, developed the SPL Knee Atlas. The atlas was derived from a MRI scan, using semi-automated image segmentation and three-dimensional reconstruction techniques. The current version consists of: 1. the original MRI scan; 2. a set of detailed label maps; 3. a set of three-dimensional models of the labeled anatomical structures; 4. a mrml-file that allows loading all of the data into the 3D Slicer for visualization. 5. several pre-defined 3D views (“anatomy teaching files”). The SPL Knee Atlas provides important reference information for anatomy teaching, and template driven segmentation. Visualization of the data requires Slicer 3. This software package can be downloaded from here. We are pleased to make this atlas available to our colleagues for free download. Please note that the data is being distributed under the Slicer license. By downloading these data, you agree to acknowledge our contribution in any of your publications that result form the use of this atlas. 
The Slicer4 version archived in a mrb (Medical Reality Bundle) file that contains the mrml scene file and all data for loading into Slicer 4 for displaying the volumes in 3D Slicer version 4.0 or greater, available for download.
This work is funded as part of the Neuroimaging Analysis Center, grant number P41 RR013218, by the NIH's National Center for Research Resources (NCRR) and grant number P41 EB015902, by the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Google Faculty Research Award.
Contributors: Matthew D'Artista, Alex Kikinis.
This atlas maybe viewed with our Open Anatomy Browser.
Jakab M, Kikinis R. CT-based Atlas of the Head and Neck. Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; 2015.Abstract
This Head and Neck Atlas has been made available by the Surgical Planning Laboratory at Brigham and Women's Hospital. The data set consists of: 1. Reduced resolution (256x256) of the MANIX data set from the OSIRIX data sets. 2. A set of detailed label maps. 3. A set of three-dimensional models of the labeled anatomical structures. 4. Several pre-defined Scene Views (“anatomy teaching files”). 5. Annotation as supplementary information associated with a scene. 6. Anatomical model hierarchy. All in a mrb (Medical Reality Bundle) archive file that contains the mrml scene file and all data for loading into Slicer 4 for displaying the volumes in 3D Slicer version 4.0 or greater, available for download. The atlas data is made available under terms of the 3D Slicer License section B.
This work is funded as part of the Neuroimaging Analysis Center, grant number P41 EB015902, by the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Google Faculty Research Award.
Contributors: Neha Agrawal, Matthew D'Artista, Susan Kikinis, Dashawn Richardson, Daniel Sachs.
This atlas maybe viewed with our Open Anatomy Browser.

Pages