Guoqiang Xie, Fan Zhang, Laura Leung, Michael A Mooney, Lorenz Epprecht, Isaiah Norton, Yogesh Rathi, Ron Kikinis, Ossama Al-Mefty, Nikos Makris, Alexandra J Golby, and Lauren J O'Donnell. 1/2020. “Anatomical Assessment of Trigeminal Nerve Tractography Using Diffusion MRI: A Comparison of Acquisition B-Values and Single- and Multi-Fiber Tracking Strategies.” Neuroimage Clin, 25, Pp. 102160.Abstract
BACKGROUND: The trigeminal nerve (TGN) is the largest cranial nerve and can be involved in multiple inflammatory, compressive, ischemic or other pathologies. Currently, imaging-based approaches to identify the TGN mostly rely on T2-weighted magnetic resonance imaging (MRI), which provides localization of the cisternal portion of the TGN where the contrast between nerve and cerebrospinal fluid (CSF) is high enough to allow differentiation. The course of the TGN within the brainstem as well as anterior to the cisternal portion, however, is more difficult to display on traditional imaging sequences. An advanced imaging technique, diffusion MRI (dMRI), enables tracking of the trajectory of TGN fibers and has the potential to visualize anatomical regions of the TGN not seen on T2-weighted imaging. This may allow a more comprehensive assessment of the nerve in the context of pathology. To date, most work in TGN tracking has used clinical dMRI acquisitions with a b-value of 1000 s/mm and conventional diffusion tensor MRI (DTI) tractography methods. Though higher b-value acquisitions and multi-tensor tractography methods are known to be beneficial for tracking brain white matter fiber tracts, there have been no studies conducted to evaluate the performance of these advanced approaches on nerve tracking of the TGN, in particular on tracking different anatomical regions of the TGN. OBJECTIVE: We compare TGN tracking performance using dMRI data with different b-values, in combination with both single- and multi-tensor tractography methods. Our goal is to assess the advantages and limitations of these different strategies for identifying the anatomical regions of the TGN. METHODS: We proposed seven anatomical rating criteria including true and false positive structures, and we performed an expert rating study of over 1000 TGN visualizations, as follows. We tracked the TGN using high-quality dMRI data from 100 healthy adult subjects from the Human Connectome Project (HCP). TGN tracking performance was compared across dMRI acquisitions with b = 1000 s/mm, b = 2000 s/mm and b = 3000 s/mm, using single-tensor (1T) and two-tensor (2T) unscented Kalman filter (UKF) tractography. This resulted in a total of six tracking strategies. The TGN was identified using an anatomical region-of-interest (ROI) selection approach. First, in a subset of the dataset we identified ROIs that provided good TGN tracking performance across all tracking strategies. Using these ROIs, the TGN was then tracked in all subjects using the six tracking strategies. An expert rater (GX) visually assessed and scored each TGN based on seven anatomical judgment criteria. These criteria included the presence of multiple expected anatomical segments of the TGN (true positive structures), specifically branch-like structures, cisternal portion, mesencephalic trigeminal tract, and spinal cord tract of the TGN. False positive criteria included the presence of any fibers entering the temporal lobe, the inferior cerebellar peduncle, or the middle cerebellar peduncle. Expert rating scores were analyzed to compare TGN tracking performance across the six tracking strategies. Intra- and inter-rater validation was performed to assess the reliability of the expert TGN rating result. RESULTS: The TGN was selected using two anatomical ROIs (Meckel's Cave and cisternal portion of the TGN). The two-tensor tractography method had significantly better performance on identifying true positive structures, while generating more false positive streamlines in comparison to the single-tensor tractography method. TGN tracking performance was significantly different across the three b-values for almost all structures studied. Tracking performance was reported in terms of the percentage of subjects achieving each anatomical rating criterion. Tracking of the cisternal portion and branching structure of the TGN was generally successful, with the highest performance of over 98% using two-tensor tractography and b = 1000 or b = 2000. However, tracking the smaller mesencephalic and spinal cord tracts of the TGN was quite challenging (highest performance of 37.5% and 57.07%, using two-tensor tractography with b = 1000 and b = 2000, respectively). False positive connections to the temporal lobe (over 38% of subjects for all strategies) and cerebellar peduncles (100% of subjects for all strategies) were prevalent. High joint probability of agreement was obtained in the inter-rater (on average 83%) and intra-rater validation (on average 90%), showing a highly reliable expert rating result. CONCLUSIONS: Overall, the results of the study suggest that researchers and clinicians may benefit from tailoring their acquisition and tracking methodology to the specific anatomical portion of the TGN that is of the greatest interest. For example, tracking of branching structures and TGN-T2 overlap can be best achieved with a two-tensor model and an acquisition using b = 1000 or b = 2000. In general, b = 1000 and b = 2000 acquisitions provided the best-rated tracking results. Further research is needed to improve both sensitivity and specificity of the depiction of the TGN anatomy using dMRI.
Lorenz Epprecht, Ahad Qureshi, Elliott D Kozin, Nicolas Vachicouras, Alexander M Huber, Ron Kikinis, Nikos Makris, Christian M Brown, Katherine L Reinshagen, and Daniel J Lee. 1/2020. “Human Cochlear Nucleus on 7 Tesla Diffusion Tensor Imaging: Insights Into Micro-anatomy and Function for Auditory Brainstem Implant Surgery.” Otol Neurotol.Abstract
OBJECTIVE: The cochlear nucleus (CN) is the target of the auditory brainstem implant (ABI). Most ABI candidates have Neurofibromatosis Type 2 (NF2) and distorted brainstem anatomy from bilateral vestibular schwannomas. The CN is difficult to characterize as routine structural MRI does not resolve detailed anatomy. We hypothesize that diffusion tensor imaging (DTI) enables both in vivo localization and quantitative measurements of CN morphology. STUDY DESIGN: We analyzed 7 Tesla (T) DTI images of 100 subjects (200 CN) and relevant anatomic structures using an MRI brainstem atlas with submillimetric (50 μm) resolution. SETTING: Tertiary referral center. PATIENTS: Young healthy normal hearing adults. INTERVENTION: Diagnostic. MAIN OUTCOME MEASURES: Diffusion scalar measures such as fractional anisotropy (FA), mean diffusivity (MD), mode of anisotropy (Mode), principal eigenvectors of the CN, and the adjacent inferior cerebellar peduncle (ICP). RESULTS: The CN had a lamellar structure and ventral-dorsal fiber orientation and could be localized lateral to the inferior cerebellar peduncle (ICP). This fiber orientation was orthogonal to tracts of the adjacent ICP where the fibers run mainly caudal-rostrally. The CN had lower FA compared to the medial aspect of the ICP (0.44 ± 0.09 vs. 0.64 ± 0.08, p < 0.001). CONCLUSIONS: 7T DTI enables characterization of human CN morphology and neuronal substructure. An ABI array insertion vector directed more caudally would better correspond to the main fiber axis of CN. State-of-the-art DTI has implications for ABI preoperative planning and future image guidance-assisted placement of the electrode array.
Laurent Chauvin, Kuldeep Kumar, Christian Wachinger, Marc Vangel, Jacques de Guise, Christian Desrosiers, William Wells, and Matthew Toews. 1/2020. “Neuroimage Signature from Salient Keypoints is Highly Specific to Individuals and Shared by Close Relatives.” Neuroimage, 204, Pp. 116208.Abstract
Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.
Fabio Nery, Filip Szczepankiewicz, Leevi Kerkelä, Matt G Hall, Enrico Kaden, Isky Gordon, David L Thomas, and Chris A Clark. 12/2019. “In vivo Demonstration of Microscopic Anisotropy in the Human Kidney using Multidimensional Diffusion MRI.” Magn Reson Med, 82, 6, Pp. 2160-8.Abstract
PURPOSE: To demonstrate the feasibility of multidimensional diffusion MRI to probe and quantify microscopic fractional anisotropy (µFA) in human kidneys in vivo. METHODS: Linear tensor encoded (LTE) and spherical tensor encoded (STE) renal diffusion MRI scans were performed in 10 healthy volunteers. Respiratory triggering and image registration were used to minimize motion artefacts during the acquisition. Kidney cortex-medulla were semi-automatically segmented based on fractional anisotropy (FA) values. A model-free analysis of LTE and STE signal dependence on b-value in the renal cortex and medulla was performed. Subsequently, µFA was estimated using a single-shell approach. Finally, a comparison of conventional FA and µFA is shown. RESULTS: The hallmark effect of µFA (divergence of LTE and STE signal with increasing b-value) was observed in all subjects. A statistically significant difference between LTE and STE signal was found in the cortex and medulla, starting from b = 750 s/mm and b = 500 s/mm , respectively. This difference was maximal at the highest b-value sampled (b = 1000 s/mm ) which suggests that relatively high b-values are required for µFA mapping in the kidney compared to conventional FA. Cortical and medullary µFA were, respectively, 0.53 ± 0.09 and 0.65 ± 0.05, both respectively higher than conventional FA (0.19 ± 0.02 and 0.40 ± 0.02). CONCLUSION: The feasibility of combining LTE and STE diffusion MRI to probe and quantify µFA in human kidneys is demonstrated for the first time. By doing so, we show that novel microstructure information-not accessible by conventional diffusion encoding-can be probed by multidimensional diffusion MRI. We also identify relevant technical limitations that warrant further development of the technique for body MRI.
Jian Wang, William M Wells, Polina Golland, and Miaomiao Zhang. 12/2019. “Registration Uncertainty Quantification via Low-dimensional Characterization of Geometric Deformations.” Magn Reson Imaging, 64, Pp. 122-31.Abstract
This paper presents an efficient approach to quantifying image registration uncertainty based on a low-dimensional representation of geometric deformations. In contrast to previous methods, we develop a Bayesian diffeomorphic registration framework in a bandlimited space, rather than a high-dimensional image space. We show that a dense posterior distribution on deformation fields can be fully characterized by much fewer parameters, which dramatically reduces the computational complexity of model inferences. To further avoid heavy computation loads introduced by random sampling algorithms, we approximate a marginal posterior by using Laplace's method at the optimal solution of log-posterior distribution. Experimental results on both 2D synthetic data and real 3D brain magnetic resonance imaging (MRI) scans demonstrate that our method is significantly faster than the state-of-the-art diffeomorphic registration uncertainty quantification algorithms, while producing comparable results.
Jie Luo, Alireza Sedghi, Karteek Popuri, Dana Cobzas, Miaomiao Zhang, Frank Preiswerk, Matthew Toews, Alexandra Golby, Masashi Sugiyama, William III M Wells, and Sarah Frisken. 10/2019. “On the Applicability of Registration Uncertainty.” In MICCAI 2019, LNCS 11765: Pp. 410-9. Shenzhen, China: Springer.Abstract
Estimating the uncertainty in (probabilistic) image registration enables, e.g., surgeons to assess the operative risk based on the trustworthiness of the registered image data. If surgeons receive inaccurately calculated registration uncertainty and misplace unwarranted confidence in the alignment solutions, severe consequences may result. For probabilistic image registration (PIR), the predominant way to quantify the registration uncertainty is using summary statistics of the distribution of transformation parameters. The majority of existing research focuses on trying out different summary statistics as well as means to exploit them. Distinctively, in this paper, we study two rarely examined topics: (1) whether those summary statistics of the transformation distribution most informatively represent the registration uncertainty; (2) Does utilizing the registration uncertainty always be beneficial. We show that there are two types of uncertainties: the transformation uncertainty, Ut, and label uncertainty Ul. The conventional way of using Ut to quantify Ul is inappropriate and can be misleading. By a real data experiment, we also share a potentially critical finding that making use of the registration uncertainty may not always be an improvement.
Luo MICCAI 2019
Karol Miller, Grand R Joldes, George Bourantas, Simon K Warfield, Damon E Hyde, Ron Kikinis, and Adam Wittek. 10/2019. “Biomechanical Modeling and Computer Simulation of the Brain during Neurosurgery.” Int J Numer Method Biomed Eng, 35, 10, Pp. e3250.Abstract
Computational biomechanics of the brain for neurosurgery is an emerging area of research recently gaining in importance and practical applications. This review paper presents the contributions of the Intelligent Systems for Medicine Laboratory and its collaborators to this field, discussing the modeling approaches adopted and the methods developed for obtaining the numerical solutions. We adopt a physics-based modeling approach and describe the brain deformation in mechanical terms (such as displacements, strains, and stresses), which can be computed using a biomechanical model, by solving a continuum mechanics problem. We present our modeling approaches related to geometry creation, boundary conditions, loading, and material properties. From the point of view of solution methods, we advocate the use of fully nonlinear modeling approaches, capable of capturing very large deformations and nonlinear material behavior. We discuss finite element and meshless domain discretization, the use of the total Lagrangian formulation of continuum mechanics, and explicit time integration for solving both time-accurate and steady-state problems. We present the methods developed for handling contacts and for warping 3D medical images using the results of our simulations. We present two examples to showcase these methods: brain shift estimation for image registration and brain deformation computation for neuronavigation in epilepsy treatment.
Fan Zhang, Nico Hoffmann, Suheyla Cetin Karayumak, Yogesh Rathi, Alexandra J Golby, and Lauren J O'Donnell. 10/2019. “Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions.” Med Image Comput Comput Assist Interv, 11766, Pp. 599-608.Abstract
We present a deep learning tractography segmentation method that allows fast and consistent white matter fiber tract identification across healthy and disease populations and across multiple diffusion MRI (dMRI) acquisitions. We create a large-scale training tractography dataset of 1 million labeled fiber samples (54 anatomical tracts are included). To discriminate between fibers from different tracts, we propose a novel 2D multi-channel feature descriptor (FiberMap) that encodes spatial coordinates of points along each fiber. We learn a CNN tract classification model based on FiberMap and obtain a high tract classification accuracy of 90.99%. The method is evaluated on a test dataset of 374 dMRI scans from three independently acquired populations across health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). We perform comparisons with two state-of-the-art white matter tract segmentation methods. Experimental results show that our method obtains a highly consistent segmentation result, where over 99% of the fiber tracts are successfully detected across all subjects under study, most importantly, including patients with space occupying brain tumors. The proposed method leverages deep learning techniques and provides a much faster and more efficient tool for large data analysis than methods using traditional machine learning techniques.
Filip Szczepankiewicz, Carl-Fredrik Westin, and Markus Nilsson. 10/2019. “Maxwell-compensated Design of Asymmetric Gradient Waveforms for Tensor-valued Diffusion Encoding.” Magn Reson Med, 82, 4, Pp. 1424-37.Abstract
PURPOSE: Diffusion encoding with asymmetric gradient waveforms is appealing because the asymmetry provides superior efficiency. However, concomitant gradients may cause a residual gradient moment at the end of the waveform, which can cause significant signal error and image artifacts. The purpose of this study was to develop an asymmetric waveform designs for tensor-valued diffusion encoding that is not sensitive to concomitant gradients. METHODS: The "Maxwell index" was proposed as a scalar invariant to capture the effect of concomitant gradients. Optimization of "Maxwell-compensated" waveforms was performed in which this index was constrained. Resulting waveforms were compared to waveforms from literature, in terms of the measured and predicted impact of concomitant gradients, by numerical analysis as well as experiments in a phantom and in a healthy human brain. RESULTS: Maxwell-compensated waveforms with Maxwell indices below 100 (mT/m) ms showed negligible signal bias in both numerical analysis and experiments. By contrast, several waveforms from literature showed gross signal bias under the same conditions, leading to a signal bias that was large enough to markedly affect parameter maps. Experimental results were accurately predicted by theory. CONCLUSION: Constraining the Maxwell index in the optimization of asymmetric gradient waveforms yields efficient diffusion encoding that negates the effects of concomitant fields while enabling arbitrary shapes of the b-tensor. This waveform design is especially useful in combination with strong gradients, long encoding times, thick slices, simultaneous multi-slice acquisition, and large FOVs.
Hamza Farooq, Yongxin Chen, Tryphon T Georgiou, Allen Tannenbaum, and Christophe Lenglet. 10/2019. “Network Curvature as a Hallmark of Brain Structural Connectivity.” Nat Commun, 10, 1, Pp. 4937.Abstract
Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.
Esra Abaci Turk, Jeffrey N Stout, Christopher Ha, Jie Luo, Borjan Gagoski, Filiz Yetisir, Polina Golland, Lawrence L Wald, Elfar Adalsteinsson, Julian N Robinson, Drucilla J Roberts, William H Barth, and Ellen P Grant. 10/2019. “Placental MRI: Developing Accurate Quantitative Measures of Oxygenation.” Top Magn Reson Imaging, 28, 5, Pp. 285-97.Abstract
The Human Placenta Project has focused attention on the need for noninvasive magnetic resonance imaging (MRI)-based techniques to diagnose and monitor placental function throughout pregnancy. The hope is that the management of placenta-related pathologies would be improved if physicians had more direct, real-time measures of placental health to guide clinical decision making. As oxygen alters signal intensity on MRI and oxygen transport is a key function of the placenta, many of the MRI methods under development are focused on quantifying oxygen transport or oxygen content of the placenta. For example, measurements from blood oxygen level-dependent imaging of the placenta during maternal hyperoxia correspond to outcomes in twin pregnancies, suggesting that some aspects of placental oxygen transport can be monitored by MRI. Additional methods are being developed to accurately quantify baseline placental oxygenation by MRI relaxometry. However, direct validation of placental MRI methods is challenging and therefore animal studies and ex vivo studies of human placentas are needed. Here we provide an overview of the current state of the art of oxygen transport and quantification with MRI. We suggest that as these techniques are being developed, increased focus be placed on ensuring they are robust and reliable across individuals and standardized to enable predictive diagnostic models to be generated from the data. The field is still several years away from establishing the clinical benefit of monitoring placental function in real time with MRI, but the promise of individual personalized diagnosis and monitoring of placental disease in real time continues to motivate this effort.
Luca Canalini, Jan Klein, Dorothea Miller, and Ron Kikinis. 10/2019. “Segmentation-based Registration of Ultrasound Volumes for Glioma Resection in Image-guided Neurosurgery.” Int J Comput Assist Radiol Surg, 14, 10, Pp. 1697-1713.Abstract
PURPOSE: In image-guided surgery for glioma removal, neurosurgeons usually plan the resection on images acquired before surgery and use them for guidance during the subsequent intervention. However, after the surgical procedure has begun, the preplanning images become unreliable due to the brain shift phenomenon, caused by modifications of anatomical structures and imprecisions in the neuronavigation system. To obtain an updated view of the resection cavity, a solution is to collect intraoperative data, which can be additionally acquired at different stages of the procedure in order to provide a better understanding of the resection. A spatial mapping between structures identified in subsequent acquisitions would be beneficial. We propose here a fully automated segmentation-based registration method to register ultrasound (US) volumes acquired at multiple stages of neurosurgery. METHODS: We chose to segment sulci and falx cerebri in US volumes, which remain visible during resection. To automatically segment these elements, first we trained a convolutional neural network on manually annotated structures in volumes acquired before the opening of the dura mater and then we applied it to segment corresponding structures in different surgical phases. Finally, the obtained masks are used to register US volumes acquired at multiple resection stages. RESULTS: Our method reduces the mean target registration error (mTRE) between volumes acquired before the opening of the dura mater and during resection from 3.49 mm (± 1.55 mm) to 1.36 mm (± 0.61 mm). Moreover, the mTRE between volumes acquired before opening the dura mater and at the end of the resection is reduced from 3.54 mm (± 1.75 mm) to 2.05 mm (± 1.12 mm). CONCLUSION: The segmented structures demonstrated to be good candidates to register US volumes acquired at different neurosurgical phases. Therefore, our solution can compensate brain shift in neurosurgical procedures involving intraoperative US data.
Teresa Nordin, Peter Zsigmond, Sonia Pujol, Carl-Fredrik Westin, and Karin Wårdell. 10/2019. “White Matter Tracing Combined with Electric Field Simulation - A Patient-specific Approach for Deep Brain Stimulation.” Neuroimage Clin, 24, Pp. 102026.Abstract
OBJECTIVE: Deep brain stimulation (DBS) in zona incerta (Zi) is used for symptom alleviation in essential tremor (ET). Zi is positioned along the dentato-rubro-thalamic tract (DRT). Electric field simulations with the finite element method (FEM) can be used for estimation of a volume where the stimulation affects the tissue by applying a fixed isolevel (V). This work aims to develop a workflow for combined patient-specific electric field simulation and white matter tracing of the DRT, and to investigate the influence on the V from different brain tissue models, lead design and stimulation modes. The novelty of this work lies in the combination of all these components. METHOD: Patients with ET were implanted in Zi (lead 3389, n = 3, voltage mode; directional lead 6172, n = 1, current mode). Probabilistic reconstruction from diffusion MRI (dMRI) of the DRT (n = 8) was computed with FSL Toolbox. Brain tissue models were created for each patient (two homogenous, one heterogenous isotropic, one heterogenous anisotropic) and the respective V (n = 48) calculated from the Comsol Multiphysics FEM simulations. The DRT and V were visualized with 3DSlicer and superimposed on the preoperative T2 MRI, and the common volumes calculated. Dice Coefficient (DC) and level of anisotropy were used to evaluate and compare the brain models. RESULT: Combined patient-specific tractography and electric field simulation was designed and evaluated, and all patients showed benefit from DBS. All V overlapped the reconstructed DRT. Current stimulation showed prominent difference between the tissue models, where the homogenous grey matter deviated most (67 < DC < 69). Result from heterogenous isotropic and anisotropic models were similar (DC > 0.95), however the anisotropic model consistently generated larger volumes related to a greater extension of the electric field along the DBS lead. Independent of tissue model, the steering effect of the directional lead was evident and consistent. CONCLUSION: A workflow for patient-specific electric field simulations in combination with reconstruction of DRT was successfully implemented. Accurate tissue classification is essential for electric field simulations, especially when using the current control stimulation. With an accurate targeting and tractography reconstruction, directional leads have the potential to tailor the electric field into the desired region.
Sharon Peled, Mark Vangel, Ron Kikinis, Clare M Tempany, Fiona M Fennessy, and Andrey Fedorov. 9/2019. “Selection of Fitting Model and Arterial Input Function for Repeatability in Dynamic Contrast-Enhanced Prostate MRI.” Acad Radiol, 26, 9, Pp. e241-e251.Abstract
RATIONALE AND OBJECTIVES: Analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging is notable for the variability of calculated parameters. The purpose of this study was to evaluate the level of measurement variability and error/variability due to modeling in DCE magnetic resonance imaging parameters. MATERIALS AND METHODS: Two prostate DCE scans were performed on 11 treatment-naïve patients with suspected or confirmed prostate peripheral zone cancer within an interval of less than two weeks. Tumor-suspicious and normal-appearing regions of interest (ROI) in the prostate peripheral zone were segmented. Different Tofts-Kety based models and different arterial input functions, with and without bolus arrival time (BAT) correction, were used to extract pharmacokinetic parameters. The percent repeatability coefficient (%RC) of fitted model parameters K, v, and k was calculated. Paired t-tests comparing parameters in tumor-suspicious ROIs and in normal-appearing tissue evaluated each parameter's sensitivity to pathology. RESULTS: Although goodness-of-fit criteria favored the four-parameter extended Tofts-Kety model with the BAT correction included, the simplest two-parameter Tofts-Kety model overall yielded the best repeatability scores. The best %RC in the tumor-suspicious ROI was 63% for k, 28% for v and 83% for K . The best p values for discrimination between tissues were p <10 for k and K, and p = 0.11 for v. Addition of the BAT correction to the models did not improve repeatability. CONCLUSION: The parameter k, using an arterial input functions directly measured from blood signals, was more repeatable than K. Both K and k values were highly discriminatory between healthy and diseased tissues in all cases. The parameter v had high repeatability but could not distinguish the two tissue types.
Inês Machado, Matthew Toews, Elizabeth George, Prashin Unadkat, Walid Essayed, Jie Luo, Pedro Teodoro, Herculano Carvalho, Jorge Martins, Polina Golland, Steve Pieper, Sarah Frisken, Alexandra Golby, William Wells, and Yangming Ou. 8/2019. “Deformable MRI-Ultrasound Registration using Correlation-based Attribute Matching for Brain Shift Correction: Accuracy and Generality in Multi-site Data.” Neuroimage, 202, Pp. 116094.Abstract
Intraoperative tissue deformation, known as brain shift, decreases the benefit of using preoperative images to guide neurosurgery. Non-rigid registration of preoperative magnetic resonance (MR) to intraoperative ultrasound (US) has been proposed as a means to compensate for brain shift. We focus on the initial registration from MR to predurotomy US. We present a method that builds on previous work to address the need for accuracy and generality of MR-iUS registration algorithms in multi-site clinical data. To improve accuracy of registration, we use high-dimensional texture attributes instead of image intensities and propose to replace the standard difference-based attribute matching with correlation-based attribute matching. We also present a strategy that deals explicitly with the large field-of-view mismatch between MR and iUS images. We optimize key parameters across independent MR-iUS brain tumor datasets acquired at three different institutions, with a total of 43 tumor patients and 758 corresponding landmarks to validate the registration algorithm. Despite differences in imaging protocols, patient demographics and landmark distributions, our algorithm was able to reduce landmark errors prior to registration in three data sets (5.37 ± 4.27, 4.18 ± 1.97 and 6.18 ± 3.38 mm, respectively) to a consistently low level (2.28 ± 0.71, 2.08 ± 0.37 and 2.24 ± 0.78 mm, respectively). Our algorithm is compared to 15 other algorithms that have been previously tested on MR-iUS registration and it is competitive with the state-of-the-art on multiple datasets. We show that our algorithm has one of the lowest errors in all datasets (accuracy), and this is achieved while sticking to a fixed set of parameters for multi-site data (generality). In contrast, other algorithms/tools of similar performance need per-dataset parameter tuning (high accuracy but lower generality), and those that stick to fixed parameters have larger errors or inconsistent performance (generality but not the top accuracy). We further characterized landmark errors according to brain regions and tumor types, a topic so far missing in the literature. We found that landmark errors were higher in high-grade than low-grade glioma patients, and higher in tumor regions than in other brain regions.
Paolo Zaffino, Guillaume Pernelle, Andre Mastmeyer, Alireza Mehrtash, Hongtao Zhang, Ron Kikinis, Tina Kapur, and Maria Francesca Spadea. 8/2019. “Fully Automatic Catheter Segmentation in MRI with 3D Convolutional Neural Networks: Application to MRI-guided Gynecologic Brachytherapy.” Phys Med Biol, 64, 16, Pp. 165008.Abstract
External-beam radiotherapy followed by high dose rate (HDR) brachytherapy is the standard-of-care for treating gynecologic cancers. The enhanced soft-tissue contrast provided by magnetic resonance imaging (MRI) makes it a valuable imaging modality for diagnosing and treating these cancers. However, in contrast to computed tomography (CT) imaging, the appearance of the brachytherapy catheters, through which radiation sources are inserted to reach the cancerous tissue later on, is often variable across images. This paper reports, for the first time, a new deep-learning-based method for fully automatic segmentation of multiple closely spaced brachytherapy catheters in intraoperative MRI. Represented in the data are 50 gynecologic cancer patients treated by MRI-guided HDR brachytherapy. For each patient, a single intraoperative MRI was used. 826 catheters in the images were manually segmented by an expert radiation physicist who is also a trained radiation oncologist. The number of catheters in a patient ranged between 10 and 35. A deep 3D convolutional neural network (CNN) model was developed and trained. In order to make the learning process more robust, the network was trained 5 times, each time using a different combination of shown patients. Finally, each test case was processed by the five networks and the final segmentation was generated by voting on the obtained five candidate segmentations. 4-fold validation was executed and all the patients were segmented. An average distance error of 2.0  ±  3.4 mm was achieved. False positive and false negative catheters were 6.7% and 1.5% respectively. Average Dice score was equal to 0.60  ±  0.17. The algorithm is available for use in the open source software platform 3D Slicer allowing for wide scale testing and research discussion. In conclusion, to the best of our knowledge, fully automatic segmentation of multiple closely spaced catheters from intraoperative MR images was achieved for the first time in gynecological brachytherapy.
Fan Zhang, Lipeng Ning, Lauren J O'Donnell, and Ofer Pasternak. 8/2019. “MK-curve - Characterizing the Relation between Mean Kurtosis and Alterations in the Diffusion MRI Signal.” Neuroimage, 196, Pp. 68-80.Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI (dMRI) technique to quantify brain microstructural properties. While DKI measures are sensitive to tissue alterations, they are also affected by signal alterations caused by imaging artifacts such as noise, motion and Gibbs ringing. Consequently, DKI often yields output parameter values (e.g. mean kurtosis; MK) that are implausible. These include implausible values that are outside of the range dictated by physics/biology, and visually apparent implausible values that form unexpected discontinuities, being too high or too low comparing with their neighborhood. These implausible values will introduce bias into any following data analyses (e.g. between-population statistical computation). Existing studies have attempted to correct implausible DKI parameter values in multiple ways; however, these approaches are not always effective. In this study, we propose a novel method for detecting and correcting voxels with implausible values to enable improved DKI parameter estimation. In particular, we focus on MK parameter estimation. We first characterize the relation between MK and alterations in the dMRI signal including diffusion weighted images (DWIs) and the baseline (b0) images. This is done by calculating MK for a range of synthetic DWI or b0 for each voxel, and generating curves (MK-curve) representing how alterations to the input dMRI signals affect the resulting output MK. We find that voxels with implausible MK values are more likely caused by artifacts in the b0 images than artifacts in DWIs with higher b-values. Accordingly, two characteristic b0 values, which define a range of synthetic b0 values that generate implausible MK values, are identified on the MK-curve. Based on this characterization, we propose an automatic approach for detection of voxels with implausible MK values by comparing a voxel's original b0 signal to the identified two characteristic b0 values, along with a correction strategy to replace the original b0 in each detected implausible voxel with a synthetic b0 value computed from the MK-curve. We evaluate the method on a DKI phantom dataset and dMRI datasets from the Human Connectome Project (HCP), and we compare the proposed correction method with other previously proposed correction methods. Results show that our proposed method is able to identify and correct most voxels with implausible DKI parameter values as well as voxels with implausible diffusion tensor parameter values.
Jean-Jacques Lemaire, Antonio De Salles, Guillaume Coll, Youssef El Ouadih, Rémi Chaix, Jérôme Coste, Franck Durif, Nikos Makris, and Ron Kikinis. 8/2019. “MRI Atlas of the Human Deep Brain.” Front Neurol, 10, Pp. 851.Abstract
Mastering detailed anatomy of the human deep brain in clinical neurosciences is challenging. Although numerous pioneering works have gathered a large dataset of structural and topographic information, it is still difficult to transfer this knowledge into practice, even with advanced magnetic resonance imaging techniques. Thus, classical histological atlases continue to be used to identify structures for stereotactic targeting in functional neurosurgery. Physicians mainly use these atlases as a template co-registered with the patient's brain. However, it is possible to directly identify stereotactic targets on MRI scans, enabling personalized targeting. In order to help clinicians directly identify deep brain structures relevant to present and future medical applications, we built a volumetric MRI atlas of the deep brain (MDBA) on a large scale (infra millimetric). Twelve hypothalamic, 39 subthalamic, 36 telencephalic, and 32 thalamic structures were identified, contoured, and labeled. Nineteen coronal, 18 axial, and 15 sagittal MRI plates were created. Although primarily designed for direct labeling, the anatomic space was also subdivided in twelfths of AC-PC distance, leading to proportional scaling in the coronal, axial, and sagittal planes. This extensive work is now available to clinicians and neuroscientists, offering another representation of the human deep brain ([] [hal-02116633]). The atlas may also be used by computer scientists who are interested in deciphering the topography of this complex region.
Filip Szczepankiewicz, Scott Hoge, and Carl-Fredrik Westin. 7/2019. “Linear, Planar and Spherical Tensor-valued Diffusion MRI Data by Free Waveform Encoding in Healthy Brain, Water, Oil and Liquid Crystals.” Data Brief, 25, Pp. 104208.Abstract
Recently, several biophysical models and signal representations have been proposed for microstructure imaging based on tensor-valued, or multidimensional, diffusion MRI. The acquisition of the necessary data requires non-conventional pulse sequences, and data is therefore not available to the wider diffusion MRI community. To facilitate exploration and development of analysis techniques based on tensor-valued diffusion encoding, we share a comprehensive data set acquired in a healthy human brain. The data encompasses diffusion weighted images using linear, planar and spherical diffusion tensor encoding at multiple b-values and diffusion encoding directions. We also supply data acquired in several phantoms that may support validation. The data is hosted by GitHub:
Tonya M Gilbert, Nicole R Zürcher, Mary C Catanese, Chieh-En J Tseng, Maria A Di Biase, Amanda E Lyall, Baileigh G Hightower, Anjali J Parmar, Anisha Bhanot, Christine J Wu, Matthew L Hibert, Minhae Kim, Umar Mahmood, Steven M Stufflebeam, Frederick A Schroeder, Changning Wang, Joshua L Roffman, Daphne J Holt, Douglas N Greve, Ofer Pasternak, Marek Kubicki, Hsiao-Ying Wey, and Jacob M Hooker. 7/2019. “Neuroepigenetic Signatures of Age and Sex in the Living Human Brain.” Nat Commun, 10, 1, Pp. 2945.Abstract
Age- and sex-related alterations in gene transcription have been demonstrated, however the underlying mechanisms are unresolved. Neuroepigenetic pathways regulate gene transcription in the brain. Here, we measure in vivo expression of the epigenetic enzymes, histone deacetylases (HDACs), across healthy human aging and between sexes using [C]Martinostat positron emission tomography (PET) neuroimaging (n = 41). Relative HDAC expression increases with age in cerebral white matter, and correlates with age-associated disruptions in white matter microstructure. A post mortem study confirmed that HDAC1 and HDAC2 paralogs are elevated in white matter tissue from elderly donors. There are also sex-specific in vivo HDAC expression differences in brain regions associated with emotion and memory, including the amygdala and hippocampus. Hippocampus and white matter HDAC expression negatively correlates with emotion regulation skills (n = 23). Age and sex are associated with HDAC expression in vivo, which could drive age- and sex-related transcriptional changes and impact human behavior.