Rojczyk P, Seitz-Holland J, Kaufmann E, Sydnor VJ, Kim CL, Umminger LF, Wiegand TLT, Guenette JP, Zhang F, Rathi Y, Bouix S, Pasternak O, Fortier CB, Salat D, Hinds SR, Heinen F, O’Donnell LJ, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Sleep Quality Disturbances Are Associated with White Matter Alterations in Veterans with Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury. Journal of Clinical Medicine. 2023;12(5):2079.

Sleep disturbances are strongly associated with mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). PTSD and mTBI have been linked to alterations in white matter (WM) microstructure, but whether poor sleep quality has a compounding effect on WM remains largely unknown. We evaluated sleep and diffusion magnetic resonance imaging (dMRI) data from 180 male post-9/11 veterans diagnosed with (1) PTSD (n = 38), (2) mTBI (n = 25), (3) comorbid PTSD+mTBI (n = 94), and (4) a control group with neither PTSD nor mTBI (n = 23). We compared sleep quality (Pittsburgh Sleep Quality Index, PSQI) between groups using ANCOVAs and calculated regression and mediation models to assess associations between PTSD, mTBI, sleep quality, and WM. Veterans with PTSD and comorbid PTSD+mTBI reported poorer sleep quality than those with mTBI or no history of PTSD or mTBI (p = 0.012 to <0.001). Poor sleep quality was associated with abnormal WM microstructure in veterans with comorbid PTSD+mTBI (p < 0.001). Most importantly, poor sleep quality fully mediated the association between greater PTSD symptom severity and impaired WM microstructure (p < 0.001). Our findings highlight the significant impact of sleep disturbances on brain health in veterans with PTSD+mTBI, calling for sleep-targeted interventions.

Keijzer HM, Duering M, Pasternak O, Meijer FJA, Verhulst MMLH, Tonino BAR, Blans MJ, Hoedemaekers CWE, Klijn CJM, Hofmeijer J. Free Water Corrected Diffusion Tensor Imaging Discriminates Between Good and Poor Outcomes of Comatose Patients After Cardiac Arrest. Eur Radiol. 2023;33(3):2139–48.

OBJECTIVES: Approximately 50% of comatose patients after cardiac arrest never regain consciousness. Cerebral ischaemia may lead to cytotoxic and/or vasogenic oedema, which can be detected by diffusion tensor imaging (DTI). Here, we evaluate the potential value of free water corrected mean diffusivity (MD) and fractional anisotropy (FA) based on DTI, for the prediction of neurological recovery of comatose patients after cardiac arrest. METHODS: A total of 50 patients after cardiac arrest were included in this prospective cohort study in two Dutch hospitals. DTI was obtained 2-4 days after cardiac arrest. Outcome was assessed at 6 months, dichotomised as poor (cerebral performance category 3-5; n = 20) or good (n = 30) neurological outcome. We calculated the whole brain mean MD and FA and compared between patients with good and poor outcomes. In addition, we compared a preliminary prediction model based on clinical parameters with or without the addition of MD and FA. RESULTS: We found significant differences between patients with good and poor outcome of mean MD (good: 726 [702-740] × 10-6 mm2/s vs. poor: 663 [575-736] × 10-6 mm2/s; p = 0.01) and mean FA (0.30 ± 0.03 vs. 0.28 ± 0.03; p = 0.03). An exploratory prediction model combining clinical parameters, MD and FA increased the sensitivity for reliable prediction of poor outcome from 60 to 85%, compared to the model containing clinical parameters only, but confidence intervals are overlapping. CONCLUSIONS: Free water-corrected MD and FA discriminate between patients with good and poor outcomes after cardiac arrest and hold the potential to add to multimodal outcome prediction. KEY POINTS: • Whole brain mean MD and FA differ between patients with good and poor outcome after cardiac arrest. • Free water-corrected MD can better discriminate between patients with good and poor outcome than uncorrected MD. • A combination of free water-corrected MD (sensitive to grey matter abnormalities) and FA (sensitive to white matter abnormalities) holds potential to add to the prediction of outcome.

Bretzner M, Bonkhoff AK, Schirmer MD, Hong S, Dalca A, Donahue K, Giese AK, Etherton MR, Rist PM, Nardin M, Regenhardt RW, Leclerc X, Lopes R, Gautherot M, Wang C, Benavente OR, Cole JW, Donatti A, Griessenauer C, Heitsch L, Holmegaard L, Jood K, Jimenez-Conde J, Kittner SJ, Lemmens R, Levi CR, McArdle PF, McDonough CW, Meschia JF, Phuah CL, Rolfs A, Ropele S, Rosand J, Roquer J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Sousa A, Stanne TM, Strbian D, Tatlisumak T, Thijs V, Vagal A, Wasselius J, Woo D, Wu O, Zand R, Worrall BB, Maguire J, Lindgren AG, Jern C, Golland P, Kuchcinski G, Rost NS, Consortium MG and GI and the ISG. Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke. Neurology. 2023;100(8):e822-e833.

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes.

METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input.

RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes.

DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.

Chakwizira A, Westin CF, Brabec J, Lasič S, Knutsson L, Szczepankiewicz F, Nilsson M. Diffusion MRI With Pulsed and Free Gradient Waveforms: Effects of Restricted Diffusion and Exchange. NMR Biomed. 2023;36(1):e4827.

Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 μm $$ \upmu \mathrmm $$ and exchange rates in the simulated range of 0 to 20 s - 1 $$ \mathrms^-1 $$ , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.

Zanao TA, Seitz-Holland J, O’Donnell LJ, Zhang F, Rathi Y, Lopes TM, Pimentel-Silva LR, Yassuda CL, Makris N, Shenton ME, Bouix S, Lyall AE, Cendes F. Hippocampal Sclerosis on White Matter Tracts and Memory in Individuals With Mesial Temporal Lobe Epilepsy. Epilepsia open. 2023;8(3):1111–1122.

OBJECTIVE: To investigate how the presence/side of hippocampal sclerosis (HS) are related to the white matter structure of cingulum bundle (CB), arcuate fasciculus (AF), and inferior longitudinal fasciculus (ILF) in mesial temporal lobe epilepsy (MTLE).

METHODS: We acquired diffusion-weighted magnetic resonance imaging (MRI) from 86 healthy and 71 individuals with MTLE (22 righ-HS; right-HS, 34 left-HS; left-HS, and 15 nonlesional MTLE). We utilized two-tensor tractography and fiber clustering to compare fractional anisotropy (FA) of each side/tract between groups. Additionally, we examined the association between FA and nonverbal (WMS-R) and verbal (WMS-R, RAVLT codification) memory performance for MTLE individuals.

RESULTS: White matter abnormalities depended on the side and presence of HS. The left-HS demonstrated widespread abnormalities for all tracts, the right-HS showed lower FA for ipsilateral tracts and the nonlesional MTLE group did not differ from healthy individuals. Results indicate no differences in verbal/nonverbal memory performance between the groups, but trend-level associations between higher FA of visual memory and the left CB (r = 0.286, P = 0.018), verbal memory (RAVLT) and -left CB (r = 0.335, P = 0.005), -right CB (r = 0.286, P = 0.016), and -left AF (r = 0.287, P = 0.017).

SIGNIFICANCE: Our results highlight that the presence and side of HS are crucial to understand the pathophysiology of MTLE. Specifically, left-sided HS seems to be related to widespread bilateral white matter abnormalities. Future longitudinal studies should focus on developing diagnostic and treatment strategies dependent on HS's presence/side.

Nejatbakhsh A, Dey N, Venkatachalam V, Yemini E, Paninski L, Varol E. Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks. Information processing in medical imaging : proceedings of the . conference. 2023;13939:332–343.

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at

Groves LA, Keita M, Talla S, Kikinis R, Fichtinger G, Mousavi P, Camara M. A Review of Low-cost Ultrasound Compatible Phantoms. IEEE Transactions on Biomedical Engineering. 2023;:1–12.

Ultrasound-compatible phantoms are used to develop novel US-based systems and train simulated medical interventions. The price difference between lab-made and commercially available ultrasound-compatible phantoms lead to the publication of many papers categorized as low-cost in the literature. The aim of this review was to improve the phantom selection process by summarizing the pertinent literature. We compiled papers on US-compatible spine, prostate, vascular, breast, kidney, and li ver phantoms. We reviewed papers for cost and accessibility, providing an overview of the materials, construction time, shelf life, needle insertion limits, and manufacturing and evaluation methods. This information was summarized by anatomy. The clinical application associated with each phantom was also reported for those interested in a particular intervention. Techniques and common practices for building low-cost phantoms were provided. Overall, this paper aims to summarize a breadth of ultrasound-compatible phantom research to enable informed phantom methods selection.

Xu J, Moyer D, Gagoski B, Iglesias JE, Grant E, Golland P, Adalsteinsson E. NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI. IEEE transactions on medical imaging. 2023;42(6):1707–1719.

Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving subjects, e. g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the state-of-the-art algorithms.

Brabec J, Friedjungová M, Vašata D, Englund E, Bengzon J, Knutsson L, Szczepankiewicz F, van Westen D, Sundgren PC, Nilsson M. Meningioma Microstructure Assessed by Diffusion MRI: An Investigation of the Source of Mean Diffusivity and Fractional Anisotropy by Quantitative Histology. NeuroImage Clin. 2023;37:103365.

BACKGROUND: Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level.

PURPOSE: To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters.

MATERIALS AND METHODS: We performed ex-vivo dMRI at 200 μm isotropic resolution and histological imaging of 16 excised meningioma tumor samples. Diffusion tensor imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAIP). Histology images were analyzed in terms of cell nuclei density (CD) and structure anisotropy (SA; obtained from structure tensor analysis) and were used separately in a regression analysis to predict MD and FAIP, respectively. A convolutional neural network (CNN) was also trained to predict the dMRI parameters from histology patches. The association between MRI and histology was analyzed in terms of out-of-sample (R2OS) on the intra-tumor level and within-sample R2 across tumors. Regions where the dMRI parameters were poorly predicted from histology were analyzed to identify features apart from CD and SA that could influence MD and FAIP, respectively.

RESULTS: Cell density assessed by histology poorly explained intra-tumor variability of MD at the mesoscopic level (200 μm), as median R2OS = 0.04 (interquartile range 0.01-0.26). Structure anisotropy explained more of the variation in FAIP (median R2OS = 0.31, 0.20-0.42). Samples with low R2OS for FAIP exhibited low variations throughout the samples and thus low explainable variability, however, this was not the case for MD. Across tumors, CD and SA were clearly associated with MD (R2 = 0.60) and FAIP (R2 = 0.81), respectively. In 37% of the samples (6 out of 16), cell density did not explain intra-tumor variability of MD when compared to the degree explained by the CNN. Tumor vascularization, psammoma bodies, microcysts, and tissue cohesivity were associated with bias in MD prediction based solely on CD. Our results support that FAIP is high in the presence of elongated and aligned cell structures, but low otherwise.

CONCLUSION: Cell density and structure anisotropy account for variability in MD and FAIP across tumors but cell density does not explain MD variations within the tumor, which means that low or high values of MD locally may not always reflect high or low tumor cell density. Features beyond cell density need to be considered when interpreting MD.

Chad JA, Sochen N, Chen J, Pasternak O. Implications of fitting a two-compartment model in single-shell diffusion MRI. Physics in medicine and biology. 2023;68(21).

It is becoming increasingly common for studies to fit single-shell diffusion MRI data to a two-compartment model, which comprises a hindered cellular compartment and a freely diffusing isotropic compartment. These studies consistently find that the fraction of the isotropic compartment (f) is sensitive to white matter (WM) conditions and pathologies, although the actual biological source of changes infhas not been validated. In this work we put aside the biological interpretation offand study the sensitivity implications of fitting single-shell data to a two-compartment model. We identify a nonlinear transformation between the one-compartment model (diffusion tensor imaging, DTI) and a two-compartment model in which the mean diffusivities of both compartments are effectively fixed. While the analytic relationship implies that fitting this two-compartment model does not offer any more information than DTI, it explains why metrics derived from a two-compartment model can exhibit enhanced sensitivity over DTI to certain types of WM processes, such as age-related WM differences. The sensitivity enhancement should not be viewed as a substitute for acquiring multi-shell data. Rather, the results of this study provide insight into the consequences of choosing a two-compartment model when only single-shell data is available.