Publications by Year: 2017

2017

Nenning KH, Liu H, Ghosh SS, Sabuncu MR, Schwartz E, Langs G. Diffeomorphic Functional Brain Surface Alignment: Functional Demons. Neuroimage. 2017;156:456–65.
Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects.
Black D, Hansen C, Nabavi A, Kikinis R, Hahn H. A Survey of Auditory Display in Image-guided Interventions. Int J Comput Assist Radiol Surg. 2017;12(10):1665–76.
PURPOSE: This article investigates the current state of the art of the use of auditory display in image-guided medical interventions. Auditory display is a means of conveying information using sound, and we review the use of this approach to support navigated interventions. We discuss the benefits and drawbacks of published systems and outline directions for future investigation. METHODS: We undertook a review of scientific articles on the topic of auditory rendering in image-guided intervention. This includes methods for avoidance of risk structures and instrument placement and manipulation. The review did not include auditory display for status monitoring, for instance in anesthesia. RESULTS: We identified 15 publications in the course of the search. Most of the literature (60%) investigates the use of auditory display to convey distance of a tracked instrument to an object using proximity or safety margins. The remainder discuss continuous guidance for navigated instrument placement. Four of the articles present clinical evaluations, 11 present laboratory evaluations, and 3 present informal evaluation (2 present both laboratory and clinical evaluations). CONCLUSION: Auditory display is a growing field that has been largely neglected in research in image-guided intervention. Despite benefits of auditory displays reported in both the reviewed literature and non-medical fields, adoption in medicine has been slow. Future challenges include increasing interdisciplinary cooperation with auditory display investigators to develop more meaningful auditory display designs and comprehensive evaluations which target the benefits and drawbacks of auditory display in image guidance.
Herrlich M, Tavakol P, Black D, Wenig D, Rieder C, Malaka R, Kikinis R. Instrument-mounted Displays for Reducing Cognitive Load during Surgical Navigation. Int J Comput Assist Radiol Surg. 2017;12(9):1599–1605.
PURPOSE: Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. METHODS: By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator’s field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. RESULTS: Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. CONCLUSION: We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.
Ratner V, Gao Y, Lee H, Elkin R, Nedergaard M, Benveniste H, Tannenbaum A. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport. Neuroimage. 2017;152:530–7.
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer’s disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over \~3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins.
Chen Y, Cruz FD, Sandhu R, Kung AL, Mundi P, Deasy JO, Tannenbaum A. Pediatric Sarcoma Data Forms a Unique Cluster Measured via the Earth Mover’s Distance. Sci Rep. 2017;7(1):7035.
In this note, we combined pediatric sarcoma data from Columbia University with adult sarcoma data collected from TCGA, in order to see if one can automatically discern a unique pediatric cluster in the combined data set. Using a novel clustering pipeline based on optimal transport theory, this turned out to be the case. The overall methodology may find uses for the classification of data from other biological networking problems.
Seroussi I, Grebenkov DS, Pasternak O, Sochen N. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance. J Magn Reson. 2017;277:95–103.
In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal.
Chen Y, Georgiou T, Pavon M, Tannenbaum A. Robust Transport over Networks. IEEE Trans Automat Contr. 2017;62(9):4675–82.
We consider transportation over a strongly connected, directed graph. The scheduling amounts to selecting transition probabilities for a discrete-time Markov evolution which is designed to be consistent with initial and final marginal constraints on mass transport. We address the situation where initially the mass is concentrated on certain nodes and needs to be transported in a certain time period to another set of nodes, possibly disjoint from the first. The random evolution is selected to be closest to a prior measure on paths in the relative entropy sense-such a construction is known as a Schrödinger bridge between the two given marginals. It may be viewed as an atypical stochastic control problem where the control consists in suitably modifying the prior transition mechanism. The prior can be chosen to incorporate constraints and costs for traversing specific edges of the graph, but it can also be selected to allocate equal probability to all paths of equal length connecting any two nodes (i.e., a uniform distribution on paths). This latter choice for prior transitions relies on the so-called Ruelle-Bowen random walker and gives rise to scheduling that tends to utilize all paths as uniformly as the topology allows. Thus, this Ruelle-Bowen law ([["fid":3628056,"view_mode":"default","type":"media","attributes":"style":"width: 22px; height: 12px;","alt":"Ruelle-Bowen Law","class":"media-element file-default "]]) taken as prior, leads to a transportation plan that tends to lessen congestion and ensures a level of robustness. We also show that the distribution [["fid":3628056,"view_mode":"default","type":"media","attributes":"style":"width: 22px; height: 12px;","alt":"Ruelle-Bowen Law","class":"media-element file-default"]] on paths, which attains the maximum entropy rate for the random walker given by the topological entropy, can itself be obtained as the time-homogeneous solution of a maximum entropy problem for measures on paths (also a Schrödinger bridge problem, albeit with prior that is not a probability measure). Finally we show that the paradigm of Schrödinger bridges as a mechanism for scheduling transport on networks can be adapted to graphs that are not strongly connected, as well as to weighted graphs. In the latter case, our approach may be used to design a transportation plan which effectively compromises between robustness and other criteria such as cost. Indeed, we explicitly provide a robust transportation plan which assigns maximum probability to minimum cost paths and therefore compares favourably with Optimal Mass Transportation strategies.
Oestreich LKL, Lyall AE, Pasternak O, Kikinis Z, Newell DT, Savadjiev P, Bouix S, Shenton ME, Kubicki M, Bank ASR, Whitford TJ, McCarthy-Jones S. Characterizing White Matter Changes in Chronic Schizophrenia: A Free-water Imaging Multi-site Study. Schizophr Res. 2017;189:153–61.
Diffusion tensor imaging (DTI) studies in chronic schizophrenia have found widespread but often inconsistent patterns of white matter abnormalities. These studies have typically used the conventional measure of fractional anisotropy, which can be contaminated by extracellular free-water. A recent free-water imaging study reported reduced free-water corrected fractional anisotropy (FAT) in chronic schizophrenia across several brain regions, but limited changes in the extracellular volume. The present study set out to validate these findings in a substantially larger sample. Tract-based spatial statistics (TBSS) was performed in 188 healthy controls and 281 chronic schizophrenia patients. Forty-two regions of interest (ROIs), as well as average whole-brain FAT and FW were extracted from free-water corrected diffusion tensor maps. Compared to healthy controls, reduced FAT was found in the chronic schizophrenia group in the anterior limb of the internal capsule bilaterally, the posterior thalamic radiation bilaterally, as well as the genu and body of the corpus callosum. While a significant main effect of group was observed for FW, none of the follow-up contrasts survived correction for multiple comparisons. The observed FAT reductions in the absence of extracellular FW changes, in a large, multi-site sample of chronic schizophrenia patients, validate the pattern of findings reported by a previous, smaller free-water imaging study of a similar sample. The limited number of regions in which FAT was reduced in the schizophrenia group suggests that actual white matter tissue degeneration in chronic schizophrenia, independent of extracellular FW, might be more localized than suggested previously.