Publications by Year: 2017

2017

Ofori E, Krismer F, Burciu RG, Pasternak O, McCracken JL, Lewis MM, Du G, McFarland NR, Okun MS, Poewe W, Mueller C, Gizewski ER, Schocke M, Kremser C, Li H, Huang X, Seppi K, Vaillancourt DE. Free Water Improves Detection of Changes in the Substantia Nigra in Parkinsonism: A Multisite Study. Mov Disord. 2017;32(10):1457–64.
BACKGROUND: Imaging markers that are sensitive to parkinsonism across multiple sites are critically needed for clinical trials. The objective of this study was to evaluate changes in the substantia nigra using single- and bi-tensor models of diffusion magnetic resonance imaging in PD, MSA, and PSP. METHODS: The study cohort (n = 425) included 107 healthy controls and 184 PD, 63 MSA, and 71 PSP patients from 3 movement disorder centers. Bi-tensor free water, free-water-corrected fractional anisotropy, free-water-corrected mean diffusivity, single-tensor fractional anisotropy, and single-tensor mean diffusivity were computed for the anterior and posterior substantia nigra. Correlations were computed between diffusion MRI measures and clinical measures. RESULTS: In the posterior substantia nigra, free water was greater for PSP than MSA and PD patients and controls. PD and MSA both had greater free water than controls. Free-water-corrected fractional anisotropy values were greater for PSP patents than for controls and PD patients. PSP and MSA patient single-tensor mean diffusivity values were greater than controls, and single-tensor fractional anisotropy values were lower for PSP patients than for healthy controls. The parkinsonism effect size for free water was 0.145 in the posterior substantia nigra and 0.072 for single-tensor mean diffusivity. The direction of correlations between single-tensor mean diffusivity and free-water values and clinical scores was similar at each site. CONCLUSIONS: Free-water values in the posterior substantia nigra provide a consistent pattern of findings across patients with PD, MSA, and PSP in a large cohort across 3 sites. Free water in the posterior substantia nigra relates to clinical measures of motor and cognitive symptoms in a large cohort of parkinsonism. 2017 International Parkinson and Movement Disorder Society.
Zhang M, Liao R, Dalca A V, Turk EA, Luo J, Grant E, Golland P. Frequency Diffeomorphisms for Efficient Image Registration. Inf Process Med Imaging. 2017;10265:559–570.
This paper presents an efficient algorithm for large deformation diffeomorphic metric mapping (LDDMM) with geodesic shooting for image registration. We introduce a novel finite dimensional Fourier representation of diffeomorphic deformations based on the key fact that the high frequency components of a diffeomorphism remain stationary throughout the integration process when computing the deformation associated with smooth velocity fields. We show that manipulating high dimensional diffeomorphisms can be carried out entirely in the bandlimited space by integrating the nonstationary low frequency components of the displacement field. This insight substantially reduces the computational cost of the registration problem. Experimental results show that our method is significantly faster than the state-of-the-art diffeomorphic image registration methods while producing equally accurate alignment. We demonstrate our algorithm in two different applications of image registration: neuroimaging and in-utero imaging.
Saito Y, Kubicki M, Koerte IK, Otsuka T, Rathi Y, Pasternak O, Bouix S, Eckbo R, Kikinis Z, von Hohenberg C, Roppongi T, Del Re E, Asami T, Lee SH, Karmacharya S, Mesholam-Gately RI, Seidman LJ, Levitt JJ, McCarley RW, Shenton ME, Niznikiewicz M. Impaired White Matter Connectivity between Regions Containing Mirror Neurons, and Relationship to Negative Symptoms and Social Cognition, in Patients with First-Episode Schizophrenia. Brain Imaging Behav. 2017;.
In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.
Pouch AM, Aly AH, Lasso A, Nguyen A V, Scanlan AB, McGowan FX, Fichtinger G, Gorman RC, Gorman JH, Yushkevich PA, Jolley MA. Image Segmentation and Modeling of the Pediatric Tricuspid Valve in Hypoplastic Left Heart Syndrome. Funct Imaging Model Heart. 2017;10263:95–105.
Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.
Stock AD, Gelb S, Pasternak O, Ben-Zvi A, Putterman C. The Blood Brain Barrier and Neuropsychiatric Lupus: New Perspectives in Light of Advances in Understanding the Neuroimmune Interface. Autoimmun Rev. 2017;16(6):612–9.
Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.
Burciu RG, Ofori E, Archer DB, Wu SS, Pasternak O, McFarland NR, Okun MS, Vaillancourt DE. Progression Marker of Parkinson’s Disease: A 4-year Multi-site Imaging Study. Brain. 2017;140(8):2183–92.
Progression markers of Parkinson’s disease are crucial for successful therapeutic development. Recently, a diffusion magnetic resonance imaging analysis technique using a bitensor model was introduced allowing the estimation of the fractional volume of free water within a voxel, which is expected to increase in neurodegenerative disorders such as Parkinson’s disease. Prior work demonstrated that free water in the posterior substantia nigra was elevated in Parkinson’s disease compared to controls across single- and multi-site cohorts, and increased over 1 year in Parkinson’s disease but not in controls at a single site. Here, the goal was to validate free water in the posterior substantia nigra as a progression marker in Parkinson’s disease, and describe the pattern of progression of free water in patients with a 4-year follow-up tested in a multicentre international longitudinal study of de novo Parkinson’s disease (http://www.ppmi-info.org/). The analyses examined: (i) 1-year changes in free water in 103 de novo patients with Parkinson’s disease and 49 controls; (ii) 2- and 4-year changes in free water in a subset of 46 patients with Parkinson’s disease imaged at baseline, 12, 24, and 48 months; (iii) whether 1- and 2-year changes in free water predict 4-year changes in the Hoehn and Yahr scale; and (iv) the relationship between 4-year changes in free water and striatal binding ratio in a subgroup of Parkinson’s disease who had undergone both diffusion and dopamine transporter imaging. Results demonstrated that: (i) free water level in the posterior substantia nigra increased over 1 year in de novo Parkinson’s disease but not in controls; (ii) free water kept increasing over 4 years in Parkinson’s disease; (iii) sex and baseline free water predicted 4-year changes in free water; (iv) free water increases over 1 and 2 years were related to worsening on the Hoehn and Yahr scale over 4 years; and (v) the 4-year increase in free water was associated with the 4-year decrease in striatal binding ratio in the putamen. Importantly, all longitudinal results were consistent across sites. In summary, this study demonstrates an increase over 1 year in free water in the posterior substantia nigra in a large cohort of de novo patients with Parkinson’s disease from a multi-site cohort study and no change in healthy controls, and further demonstrates an increase of free water in Parkinson’s disease over the course of 4 years. A key finding was that results are consistent across sites and the 1-year and 2-year increase in free water in the posterior substantia nigra predicts subsequent long-term progression on the Hoehn and Yahr staging system. Collectively, these findings demonstrate that free water in the posterior substantia nigra is a valid, progression imaging marker of Parkinson’s disease, which may be used in clinical trials of disease-modifying therapies.
Parisot S, Glocker B, Ktena SI, Arslan S, Schirmer MD, Rueckert D. A Flexible Graphical Model for Multi-modal Parcellation of the Cortex. Neuroimage. 2017;162:226–48.
Advances in neuroimaging have provided a tremendous amount of in-vivo information on the brain’s organisation. Its anatomy and cortical organisation can be investigated from the point of view of several imaging modalities, many of which have been studied for mapping functionally specialised cortical areas. There is strong evidence that a single modality is not sufficient to fully identify the brain’s cortical organisation. Combining multiple modalities in the same parcellation task has the potential to provide more accurate and robust subdivisions of the cortex. Nonetheless, existing brain parcellation methods are typically developed and tested on single modalities using a specific type of information. In this paper, we propose Graph-based Multi-modal Parcellation (GraMPa), an iterative framework designed to handle the large variety of available input modalities to tackle the multi-modal parcellation task. At each iteration, we compute a set of parcellations from different modalities and fuse them based on their local reliabilities. The fused parcellation is used to initialise the next iteration, forcing the parcellations to converge towards a set of mutually informed modality specific parcellations, where correspondences are established. We explore two different multi-modal configurations for group-wise parcellation using resting-state fMRI, diffusion MRI tractography, myelin maps and task fMRI. Quantitative and qualitative results on the Human Connectome Project database show that integrating multi-modal information yields a stronger agreement with well established atlases and more robust connectivity networks that provide a better representation of the population.
Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1(9):691–696.
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77(21):e104-e107.
Radiomics aims to quantify phenotypic characteristics on medical imaging through the use of automated algorithms. Radiomic artificial intelligence (AI) technology, either based on engineered hard-coded algorithms or deep learning methods, can be used to develop noninvasive imaging-based biomarkers. However, lack of standardized algorithm definitions and image processing severely hampers reproducibility and comparability of results. To address this issue, we developed , a flexible open-source platform capable of extracting a large panel of engineered features from medical images. is implemented in Python and can be used standalone or using 3D Slicer. Here, we discuss the workflow and architecture of and demonstrate its application in characterizing lung lesions. Source code, documentation, and examples are publicly available at www.radiomics.io With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research. .