Publications by Year: 2014

Preti MG, Makris N, Papadimitriou G, Laganà MM, Griffanti L, Clerici M, Nemni R, Westin C-F, Baselli G, Baglio F. A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease. PLoS One. 2014;9 (3) :e92026.Abstract
Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease.
Lee JW, Norden AD, Ligon KL, Golby AJ, Beroukhim R, Quackenbush J, Wells III WM, Oelschlager K, Maetzold D, Wen PY. Tumor Associated Seizures in Glioblastomas are Influenced by Survival Gene Expression in a Region-specific Manner: A Gene Expression Imaging Study. Epilepsy Res. 2014;108 (5) :843-52.Abstract

Tumor associated seizures (TAS) are common and cause significant morbidity. Both imaging and gene expression features play significant roles in determining TAS, with strong interactions between them. We describe gene expression imaging tools which allow mapping of brain regions where gene expression has significant influence on TAS, and apply these methods to study 77 patients who underwent surgical evaluation for supratentorial glioblastomas. Tumor size and location were measured from MRI scans. A 9-set gene expression profile predicting long-term survivors was obtained from RNA derived from formalin-fixed paraffin embedded tissue. A total of 32 patients (42%) experienced preoperative TAS. Tumor volume was smaller (31.1 vs. 58.8 cubic cm, p<0.001) and there was a trend toward median survival being higher (48.4 vs. 32.7 months, p=0.055) in patients with TAS. Although the expression of only OLIG2 was significantly lower in patients with TAS in a groupwise analysis, gene expression imaging analysis revealed regions with significantly lower expression of OLIG2 and RTN1 in patients with TAS. Gene expression imaging is a powerful technique that demonstrates that the influence of gene expression on TAS is highly region specific. Regional variability should be evaluated with any genomic or molecular markers of solid brain lesions.

Fedorov A, Wells III WM, Kikinis R, Tempany CM, Vangel MG. Application of Tolerance Limits to the Characterization of Image Registration Performance. IEEE Trans Med Imaging. 2014;33 (7) :1541-50.Abstract

Deformable image registration is used increasingly in image-guided interventions and other applications. However, validation and characterization of registration performance remain areas that require further study. We propose an analysis methodology for deriving tolerance limits on the initial conditions for deformable registration that reliably lead to a successful registration. This approach results in a concise summary of the probability of registration failure, while accounting for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the input parameter that leads to successful registration outcome in at least 100β% of cases with the 100γ% confidence. The utility of the methodology is illustrated by summarizing the performance of a deformable registration algorithm evaluated in three different experimental setups of increasing complexity. Our examples are based on clinical data collected during MRI-guided prostate biopsy registered using publicly available deformable registration tool. The results indicate that the proposed methodology can be used to generate concise graphical summaries of the experiments, as well as a probabilistic estimate of the registration outcome for a future sample. Its use may facilitate improved objective assessment, comparison and retrospective stress-testing of deformable.

Woolgar A, Golland P, Bode S. Coping With Confounds in Multivoxel Pattern Analysis: What Should We Do About Reaction Time Differences? A Comment On Todd, Nystrom & Cohen 2013. Neuroimage. 2014;98 :506-12.Abstract
Multivoxel pattern analysis (MVPA) is a sensitive and increasingly popular method for examining differences between neural activation patterns that cannot be detected using classical mass-univariate analysis. Recently, Todd et al. ("Confounds in multivariate pattern analysis: Theory and rule representation case study", 2013, NeuroImage 77: 157-165) highlighted a potential problem for these methods: high sensitivity to confounds at the level of individual participants due to the use of directionless summary statistics. Unlike traditional mass-univariate analyses where confounding activation differences in opposite directions tend to approximately average out at group level, group level MVPA results may be driven by any activation differences that can be discriminated in individual participants. In Todd et al.'s empirical data, factoring out differences in reaction time (RT) reduced a classifier's ability to distinguish patterns of activation pertaining to two task rules. This raises two significant questions for the field: to what extent have previous multivoxel discriminations in the literature been driven by RT differences, and by what methods should future studies take RT and other confounds into account? We build on the work of Todd et al. and compare two different approaches to remove the effect of RT in MVPA. We show that in our empirical data, in contrast to that of Todd et al., the effect of RT on rule decoding is negligible, and results were not affected by the specific details of RT modelling. We discuss the meaning of and sensitivity for confounds in traditional and multivoxel approaches to fMRI analysis. We observe that the increased sensitivity of MVPA comes at a price of reduced specificity, meaning that these methods in particular call for careful consideration of what differs between our conditions of interest. We conclude that the additional complexity of the experimental design, analysis and interpretation needed for MVPA is still not a reason to favour a less sensitive approach.
Fitzsimmons J, Hamoda HM, Swisher T, Terry D, Rosenberger G, Seidman LJ, Goldstein J, Mesholam-Gately R, Petryshen T, Wojcik J, et al. Diffusion tensor imaging study of the fornix in first episode schizophrenia and in healthy controls. Schizophr Res. 2014;156 (2-3) :157-60.Abstract
BACKGROUND: The fornix is a compact bundle of white matter fibers that project from the hippocampus to the mamillary bodies and septal nuclei. Its association with memory, as well as with symptoms in schizophrenia, has been reported in chronic schizophrenia. The purpose of this study is to determine whether or not fornix abnormalities are evident at the onset of schizophrenia. METHODS: Diffusion tensor imaging (DTI) and DT tractography were used to evaluate the fornix in 21 patients with first episode schizophrenia (16 males/5 females) and 22 healthy controls (13 males/9 females). Groups were matched on age, gender, parental socioeconomic status, education and handedness. Fractional anisotropy (FA), a measure of white matter integrity, radial diffusivity (RD), thought to reflect myelin integrity, trace, a possible marker of atrophy or cell loss, and axial diffusivity (AD), thought to reflect axonal integrity, were averaged over the entire tract extracted by means of DT tractography, and used to investigate fornix abnormalities in first episode schizophrenia compared with healthy controls. RESULTS: Significant group differences were found between first episode patients and controls for FA (p=0.0001), RD (p=0.001) and trace (p=0.006). CONCLUSION: These findings suggest abnormalities in the fornix in the early stages of schizophrenia, and further suggest that white matter abnormalities, which are apparent in the early course of the disease, may reflect myelin disturbances.
Liu S, Cai W, Wen L, Feng DD, Pujol S, Kikinis R, Fulham MJ, Eberl S. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization. Comput Med Imaging Graph. 2014;38 (6) :436-44.Abstract
Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment.
Rathi Y, Michailovich O, Laun F, Setsompop K, Grant PE, Westin C-F. Multi-shell Diffusion Signal Recovery from Sparse Measurements. Med Image Anal. 2014;18 (7) :1143-56.Abstract
For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However, this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire q-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space.
Ng TS, Lin AP, Koerte IK, Pasternak O, Liao HJ, Merugumala S, Bouix S, Shenton ME. Neuroimaging in repetitive brain trauma. Alzheimers Res Ther. 2014;6 (1) :10.Abstract
Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report.
Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar UB, Kikinis R, Haibe-Kains B, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9 (7) :e102107.Abstract
Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be employed for quantitative image feature extraction and image data mining research in large patient cohorts.
Cavallari M, Moscufo N, Meier D, Skudlarski P, Pearlson GD, White WB, Wolfson L, Guttmann CRG. Thalamic fractional anisotropy predicts accrual of cerebral white matter damage in older subjects with small-vessel disease. J Cereb Blood Flow Metab. 2014;34 (8) :1321-7.Abstract
White matter hyperintensities (WMHs) and lacunes are magnetic resonance imaging hallmarks of cerebral small-vessel disease, which increase the risk of stroke, cognitive, and mobility impairment. Although most studies of cerebral small-vessel disease have focused on white matter abnormalities, the gray matter (GM) is also affected, as evidenced by frequently observed lacunes in subcortical GM. Diffusion tensor imaging (DTI) is sensitive to subtle neurodegenerative changes in deep GM structures. We explored the relationship between baseline DTI characteristics of the thalamus, caudate, and putamen, and the volume and subsequent accrual of WMHs over a 4-year period in 56 community-dwelling older (⩾75 years) individuals. Baseline thalamic fractional anisotropy (FA) was an independent predictor of WMH accrual. WMH accrual also correlated with baseline lacune count and baseline WMH volume, the latter showing the strongest predictive power, explaining 27.3% of the variance. The addition of baseline thalamic FA in multivariate modeling increased this value by 70%, which explains 46.5% of the variance in WMH accrual rate. Thalamic FA might serve as a novel predictor of cerebral small-vessel disease progression in clinical settings and trials. Furthermore, our findings point to the possibility of a causal relationship between thalamic damage and the accrual of WMHs.
Huang W, Li X, Chen Y, Li X, Chang M-C, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, Fedorov A, et al. Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. Transl Oncol. 2014;7 (1) :153-66.Abstract
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as K (trans) (rate constant for plasma/interstitium contrast agent transfer), v e (extravascular extracellular volume fraction), and v p (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for K (trans) and v p being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the K (trans) intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for K (trans)) to 0.92 (for K (trans) percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor K (trans) and k ep (=K (trans)/v e, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.
Langs G, Sweet A, Lashkari D, Tie Y, Rigolo L, Golby AJ, Golland P. Decoupling Function and Anatomy in Atlases of Functional Connectivity Patterns: Language Mapping in Tumor Patients. Neuroimage. 2014;103 :462-75.Abstract
In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors.
Gao Y, Tannenbaum A, Bouix S. A Framework for Joint Image-and-Shape Analysis. Proc SPIE Int Soc Opt Eng. 2014;9034 :90340V.Abstract
Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.
Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin C-F. Fusion of White and Gray Matter Geometry: A Framework for Investigating Brain Development. Med Image Anal. 2014;18 (8) :1349-60.Abstract
Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for "fusing" white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth (Courchesne, 2004).
Nakhmani A, Kikinis R, Tannenbaum A. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes. Proc SPIE Int Soc Opt Eng. 2014;9034 :903442.Abstract
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
Echlin PS, Johnson AM, Holmes JD, Tichenoff A, Gray S, Gatavackas H, Walsh J, Middlebro T, Blignaut A, MacIntyre M, et al. The Sport Concussion Education Project. A brief report on an educational initiative: from concept to curriculum. J Neurosurg. 2014;121 (6) :1331-6.Abstract
Current research on concussion is primarily focused on injury identification and treatment. Prevention initiatives are, however, important for reducing the incidence of brain injury. This report examines the development and implementation of an interactive electronic teaching program (an e-module) that is designed specifically for concussion education within an adolescent population. This learning tool and the accompanying consolidation rubric demonstrate that significant engagement occurs in addition to the knowledge gained among participants when it is used in a school curriculum setting.
Huang S, Rossi S, Hämäläinen M, Ahveninen J. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony. PLoS One. 2014;9 (10) :e110989.Abstract
When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.
Knutsson H, Westin C-F. From Expected Propagator Distribution to Optimal Q-Space Sample Metric. Med Image Comput Comput Assist Interv. 2014;17 (Pt 3) :217-24.Abstract
We present a novel approach to determine a local q-space metric that is optimal from an information theoreticperspective with respect to the expected signal statistics. It should be noted that the approach does not attempt to optimize the quality of a pre-defined mathematical representation, the estimator. In contrast, our suggestion aims at obtaining the maximum amount of information without enforcing a particular feature representation. Results for three significantly different average propagator distributions are presented. The results show that the optimal q-space metric has a strong dependence on the assumed distribution in the targeted tissue. In many practical cases educated guesses can be made regarding the average propagator distribution present. In such cases the presented analysis can produce a metric that is optimal with respect to this distribution. The metric will be different at different q-space locations and is defined by the amount of additional information that is obtained when adding a second sample at a given offset from a first sample. The intention is to use the obtained metric as a guide for the generation of specific efficient q-space sample distributions for the targeted tissue.
Gao Y, Zhu L-J, Bouix S, Tannenbaum A. Interpolation of Longitudinal Shape and Image Data via Optimal Mass Transport. Proc SPIE Int Soc Opt Eng. 2014;9034 :90342X.Abstract
Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.
Westin C-F, Szczepankiewicz F, Pasternak O, Ozarslan E, Topgaard D, Knutsson H, Nilsson M. Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding. Med Image Comput Comput Assist Interv. 2014;17 (Pt 3) :209-16.Abstract
In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).