Application of Tolerance Limits to the Characterization of Image Registration Performance

Citation:

Andriy Fedorov, William M Wells III, Ron Kikinis, Clare M Tempany, and Mark G Vangel. 2014. “Application of Tolerance Limits to the Characterization of Image Registration Performance.” IEEE Trans Med Imaging, 33, 7, Pp. 1541-50.

Abstract:

Deformable image registration is used increasingly in image-guided interventions and other applications. However, validation and characterization of registration performance remain areas that require further study. We propose an analysis methodology for deriving tolerance limits on the initial conditions for deformable registration that reliably lead to a successful registration. This approach results in a concise summary of the probability of registration failure, while accounting for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the input parameter that leads to successful registration outcome in at least 100β% of cases with the 100γ% confidence. The utility of the methodology is illustrated by summarizing the performance of a deformable registration algorithm evaluated in three different experimental setups of increasing complexity. Our examples are based on clinical data collected during MRI-guided prostate biopsy registered using publicly available deformable registration tool. The results indicate that the proposed methodology can be used to generate concise graphical summaries of the experiments, as well as a probabilistic estimate of the registration outcome for a future sample. Its use may facilitate improved objective assessment, comparison and retrospective stress-testing of deformable.

Last updated on 10/19/2017