Publications by Year: 2014

2014
Peter Savadjiev, Yogesh Rathi, Sylvain Bouix, Alex R Smith, Robert T Schultz, Ragini Verma, and Carl-Fredrik Westin. 2014. “Fusion of White and Gray Matter Geometry: A Framework for Investigating Brain Development.” Med Image Anal, 18, 8, Pp. 1349-60.Abstract
Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for "fusing" white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth (Courchesne, 2004).
Yogesh Rathi, Lipeng Ning, Oleg Michailovich, HuiJun Liao, Borjan Gagoski, Ellen P Grant, Martha E Shenton, Robert Stern, Carl-Fredrik Westin, and Alexander Lin. 2014. “Maximum Entropy Estimation of Glutamate and Glutamine in MR Spectroscopic Imaging.” Med Image Comput Comput Assist Interv, 17, Pt 2, Pp. 749-56.Abstract
Magnetic resonance spectroscopic imaging (MRSI) is often used to estimate the concentration of several brain metabolites. Abnormalities in these concentrations can indicate specific pathology, which can be quite useful in understanding the disease mechanism underlying those changes. Due to higher concentration, metabolites such as N-acetylaspartate (NAA), Creatine (Cr) and Choline (Cho) can be readily estimated using standard Fourier transform techniques. However, metabolites such as Glutamate (Glu) and Glutamine (Gln) occur in significantly lower concentrations and their resonance peaks are very close to each other making it difficult to accurately estimate their concentrations (separately). In this work, we propose to use the theory of 'Spectral Zooming' or high-resolution spectral analysis to separate the Glutamate and Glutamine peaks and accurately estimate their concentrations. The method works by estimating a unique power spectral density, which corresponds to the maximum entropy solution of a zero-mean stationary Gaussian process. We demonstrate our estimation technique on several physical phantom data sets as well as on in-vivo brain spectroscopic imaging data. The proposed technique is quite general and can be used to estimate the concentration of any other metabolite of interest.
Carl-Fredrik Westin, Filip Szczepankiewicz, Ofer Pasternak, Evren Ozarslan, Daniel Topgaard, Hans Knutsson, and Markus Nilsson. 2014. “Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding.” Med Image Comput Comput Assist Interv, 17, Pt 3, Pp. 209-16.Abstract
In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).
Y Rathi, O Michailovich, F Laun, K Setsompop, PE Grant, and C-F Westin. 2014. “Multi-shell Diffusion Signal Recovery from Sparse Measurements.” Med Image Anal, 18, 7, Pp. 1143-56.Abstract
For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However, this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire q-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space.
MG Crabb, JL Davidson, R Little, P. Wright, AR Morgan, CA Miller, JH Naish, GJM Parker, R. Kikinis, H McCann, and WRB Lionheart. 2014. “Mutual Information as a Measure of Image Quality for 3-D Dynamic Lung Imaging with EIT.” Physiol Meas, 35, 5, Pp. 863-79.Abstract
We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.
Maria Giulia Preti, Nikos Makris, George Papadimitriou, Maria Marcella Laganà, Ludovica Griffanti, Mario Clerici, Raffaello Nemni, Carl-Fredrik Westin, Giuseppe Baselli, and Francesca Baglio. 2014. “A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease.” PLoS One, 9, 3, Pp. e92026.Abstract
Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease.
Gurman Gill, Matthew Toews, and Reinhard R Beichel. 2014. “Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach.” Int J Biomed Imaging, 2014, Pp. 479154.Abstract

Model-based segmentation methods have the advantage of incorporating a priori shape information into the segmentation process but suffer from the drawback that the model must be initialized sufficiently close to the target. We propose a novel approach for initializing an active shape model (ASM) and apply it to 3D lung segmentation in CT scans. Our method constructs an atlas consisting of a set of representative lung features and an average lung shape. The ASM pose parameters are found by transforming the average lung shape based on an affine transform computed from matching features between the new image and representative lung features. Our evaluation on a diverse set of 190 images showed an average dice coefficient of 0.746 ± 0.068 for initialization and 0.974 ± 0.017 for subsequent segmentation, based on an independent reference standard. The mean absolute surface distance error was 0.948 ± 1.537 mm. The initialization as well as segmentation results showed a statistically significant improvement compared to four other approaches. The proposed initialization method can be generalized to other applications employing ASM-based segmentation.

Adrian Vasile Dalca, Ramesh Sridharan, Lisa Cloonan, Kaitlin M Fitzpatrick, Allison Kanakis, Karen L Furie, Jonathan Rosand, Ona Wu, Mert Sabuncu, Natalia S Rost, and Polina Golland. 2014. “Segmentation 0f Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors.” Med Image Comput Comput Assist Interv, 17, Pt 2, Pp. 773-80.Abstract
We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
Kayhan N Batmanghelich, Michael Cho, Raul San Jose, and Polina Golland. 2014. “Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.” Bayesian Graph Models Biomed Imaging, 8677, Pp. 107-17.Abstract
In this paper, we use Spherical Topic Models to discover the latent structure of lung disease. This method can be widely employed when a measurement for each subject is provided as a normalized histogram of relevant features. In this paper, the resulting descriptors are used as phenotypes to identify genetic markers associated with the Chronic Obstructive Pulmonary Disease (COPD). Features extracted from images capture the heterogeneity of the disease and therefore promise to improve detection of relevant genetic variants in Genome Wide Association Studies (GWAS). Our generative model is based on normalized histograms of image intensity of each subject and it can be readily extended to other forms of features as long as they are provided as normalized histograms. The resulting algorithm represents the intensity distribution as a combination of meaningful latent factors and mixing co-efficients that can be used for genetic association analysis. This approach is motivated by a clinical hypothesis that COPD symptoms are caused by multiple coexisting disease processes. Our experiments show that the new features enhance the previously detected signal on chromosome 15 with respect to standard respiratory and imaging measurements.

Pages