Publications by Year: 2005


Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK. Hybrid formulation of the model-based non-rigid registration problem to improve accuracy and robustness. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):295–302.
We present a new algorithm to register 3D pre-operative Magnetic Resonance (MR) images with intra-operative MR images of the brain. This algorithm relies on a robust estimation of the deformation from a sparse set of measured displacements. We propose a new framework to compute iteratively the displacement field starting from an approximation formulation (minimizing the sum of a regularization term and a data error term) and converging toward an interpolation formulation (least square minimization of the data error term). The robustness of the algorithm is achieved through the introduction of an outliers rejection step in this gradual registration process. We ensure the validity of the deformation by the use of a biomechanical model of the brain specific to the patient, discretized with the finite element method. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift up to 13 mm.
Maddah M, Mewes AUJ, Haker S, Grimson EL, Warfield SK. Automated atlas-based clustering of white matter fiber tracts from DTMRI. Med Image Comput Comput Assist Interv. 2005;8(Pt 1):188–95.
A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such an atlas and use it to cluster all fiber tracts in the white matter. To build the atlas, we start with a set of labeled ROIs specified by an expert and extract the fiber tracts initiating from each ROI. Affine registration is used to project the extracted fiber tracts of each subject to the atlas, whereas their B-spline representation is used to efficiently compare them to the fiber tracts in the atlas and assign cluster labels. Expert visual inspection of the result confirms that the proposed method is very promising and efficient in clustering of the known bundles of fiber tracts.
Pichon E, Westin CF, Tannenbaum AR. A Hamilton-Jacobi-Bellman approach to high angular resolution diffusion tractography. Med Image Comput Comput Assist Interv. 2005;8(Pt 1):180–7.
This paper describes a new framework for white matter tractography in high angular resolution diffusion data. A direction-dependent local cost is defined based on the diffusion data for every direction on the unit sphere. Minimum cost curves are determined by solving the Hamilton-Jacobi-Bellman using an efficient algorithm. Classical costs based on the diffusion tensor field can be seen as a special case. While the minimum cost (or equivalently the travel time of a particle moving along the curve) and the anisotropic front propagation frameworks are related, front speed is related to particle speed through a Legendre transformation which can severely impact anisotropy information for front propagation techniques. Implementation details and results on high angular diffusion data show that this method can successfully take advantage of the increased angular resolution in high b-value diffusion weighted data despite lower signal to noise ratio.
Archip N, Rohling R, Cooperberg P, Tahmasebpour H. Ultrasound image segmentation using spectral clustering. Ultrasound Med Biol. 2005;31(11):1485–97.
Segmentation of ultrasound images is necessary in a variety of clinical applications, but the development of automatic techniques is still an open problem. Spectral clustering techniques have recently become popular for data and image analysis. In particular, image segmentation has been proposed via the normalized cut (NCut) criterion. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The adaptation of the NCut technique to ultrasound is described first. Segmentation is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. The success of the segmentation on these test cases warrants further research into NCut-based segmentation of ultrasound images.
BACKGROUND AND PURPOSE: Talairach-based parcellation (TP) of human brain magnetic resonance imaging (MRI) data has been used increasingly in clinical research to make regional measurements of brain structures in vivo. Recently, TP has been applied to pediatric research to elucidate the changes in regional brain volumes related to several neurological disorders. However, all freely available tools have been designed to parcellate adult brain MRI data. Parcellation of neonatal MRI data is very challenging owing to the lack of strong signal contrast, variability in signal intensity within tissues, and the small size and thus difficulty in identifying small structures used as landmarks for TP. Hence the authors designed and validated a new interactive tool to parcellate brain MRI data from newborns and young infants. METHODS: The authors’ tool was developed as part of a postprocessing pipeline, which includes registration of multichannel MR images, segmentation, and parcellation of the segmented data. The tool employs user-friendly interactive software to visualize and assign the anatomic landmarks required for parcellation, after which the planes and parcels are generated automatically by the algorithm. The authors then performed 3 sets of validation experiments to test the precision and reliability of their tool. RESULTS: Validation experiments of intra-and interrater reliability on data obtained from newborn and 1-year-old children showed a very high sensitivity of >95% and specificity >99.9%. The authors also showed that rotating and reformatting the original MRI data results in a statistically significant difference in parcel volumes, demonstrating the importance of using a tool such as theirs that does not require realignment of the data prior to parcellation. CONCLUSIONS: To the authors’ knowledge, the presented approach is the first TP method that has been developed and validated specifically for neonatal brain MRI data. Their approach would also be valuable for the analysis of brain MRI data from older children and adults.
Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.
We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.
Zou KH, Greve DN, Wang M, Pieper SD, Warfield SK, White NS, Manandhar S, Brown GG, Vangel MG, Kikinis R, Wells WM. Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology. 2005;237(3):781–9.
PURPOSE: To prospectively investigate the factors—including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit—affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task. MATERIALS AND METHODS: The institutional review boards of all participating sites approved this HIPAA-compliant study. All subjects gave informed consent. Functional MR imaging data were repeatedly acquired from five healthy men aged 20-29 years who performed the same SM task at 10 sites. Five 1.5-T MR imaging units, four 3.0-T units, and one 4.0-T unit were used. The subjects performed bilateral finger tapping on button boxes with a 3-Hz audio cue and a reversing checkerboard. In a block design, 15-second epochs of alternating baseline and tasks yielded 85 acquisitions per run. Functional MR images were acquired with block-design echo-planar or spiral gradient-echo sequences. Brain activation maps standardized in a unit-sphere for the left and right hemispheres of each subject were constructed. Areas under the receiver operating characteristic curve, intraclass correlation coefficients, multiple regression analysis, and paired Student t tests were used for statistical analyses.
Niethammer M, Vela PA, Tannenbaum A. On the Evolution of Vector Distance Functions of Closed Curves. Int J Comput Vis. 2005;65(1-2):5–27.
Inspired by the work by Gomes et al., we describe and analyze a vector distance function approach for the implicit evolution of closed curves of codimension larger than one. The approach is set up in complete generality, and then applied to the evolution of dynamic geometric active contours in [Formula: see text] (codimension three case). In order to carry this out one needs an explicit expression for the zero level set for which we propose a discrete connectivity method. This leads us to make connections with the new theory of cubical homology. We provide some explicit simulation results in order to illustrate the methodology.
Simmross-Wattenberg F, Carranza-Herrezuelo N, Palacios-Camarero C, Casaseca-de-la-Higuera P, Martín-Fernández MA, Aja-Fernández S, Ruiz-Alzola J, Westin CF, Alberola-López C. Group-Slicer: a collaborative extension of 3D-Slicer. J Biomed Inform. 2005;38(6):431–42.
In this paper, we describe a first step towards a collaborative extension of the well-known 3D-Slicer; this platform is nowadays used as a standalone tool for both surgical planning and medical intervention. We show how this tool can be easily modified to make it collaborative so that it may constitute an integrated environment for expertise exchange as well as a useful tool for academic purposes.
Liu L, Meier D, Polgar-Turcsanyi M, Karkocha P, Bakshi R, Guttmann CRG. Multiple sclerosis medical image analysis and information management. J Neuroimaging. 2005;15(4 Suppl):103S-117S.
Magnetic resonance imaging (MRI) has become a central tool for patient management, as well as research, in multiple sclerosis (MS). Measurements of disease burden and activity derived from MRI through quantitative image analysis techniques are increasingly being used. There are many complexities and challenges in building computerized processing pipelines to ensure efficiency, reproducibility, and quality control for MRI scans from MS patients. Such paradigms require advanced image processing and analysis technologies, as well as integrated database management systems to ensure the most utility for clinical and research purposes. This article reviews pipelines available for quantitative clinical MRI research in MS, including image segmentation, registration, time-series analysis, performance validation, visualization techniques, and advanced medical imaging software packages. To address the complex demands of the sequential processes, the authors developed a workflow management system that uses a centralized database and distributed computing system for image processing and analysis. The implementation of their system includes a web-form-based Oracle database application for information management and event dispatching, and multiple modules for image processing and analysis. The seamless integration of processing pipelines with the database makes it more efficient for users to navigate complex, multistep analysis protocols, reduces the user’s learning curve, reduces the time needed for combining and activating different computing modules, and allows for close monitoring for quality-control purposes. The authors’ system can be extended to general applications in clinical trials and to routine processing for image-based clinical research.