Publications by Year: 2005

Lei Zhu, Steven Haker, and Allen Tannenbaum. 2005. “Mass preserving registration for heart MR images.” Med Image Comput Comput Assist Interv, 8, Pt 2, Pp. 147-54.Abstract
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.
A Brehmer, TM Lindig, F Schrödl, W Neuhuber, D Ditterich, M Rexer, and H Rupprecht. 2005. “Morphology of enkephalin-immunoreactive myenteric neurons in the human gut.” Histochem Cell Biol, 123, 2, Pp. 131-8.Abstract
The aim of this study was the morphological and further chemical characterisation of neurons immunoreactive for leu-enkephalin (leuENK). Ten wholemounts of small and large intestinal segments from nine patients were immunohistochemically triple-stained for leuENK/neurofilament 200 (NF)/substance P (SP). Based on their simultaneous NF-reactivity and 3D reconstruction of single NF-reactive cells, 97.5% of leuENK-positive neurons displayed the appearance of stubby neurons: small somata; short, stubby dendrites and one axon. Of these leuENK-reactive stubby neurons, 91.3% did not display co-reactivity for SP whereas 8.7% were SP-co-reactive. As to their axonal projection pattern, 50.4% of the recorded leuENK stubby neurons had axons running orally whereas in 29.4% they ran anally; the directions of the remaining 20.2% could not be determined. No axons were seen to enter into secondary strands of the myenteric plexus. Somal area measurements revealed clearly smaller somata of leuENK-reactive stubby neurons (between 259+/-47 microm(2) and 487+/-113 microm(2)) than those of putative sensory type II neurons (between 700+/-217 microm(2) and 1,164+/-396 microm(2)). The ratio dendritic field area per somal area of leuENK-reactive stubby neurons was between 2.0 and 2.8 reflecting their short dendrites. Additionally, we estimated the proportion of leuENK-positive neurons in comparison to the putative whole myenteric neuron population in four leuENK/anti-Hu doublestained wholemounts. This proportion ranged between 5.9% and 8.3%. We suggest leuENK-reactive stubby neurons to be muscle motor neurons and/or ascending interneurons. Furthermore, we explain why we do not use the term "Dogiel type I neurons" for this population.
Lifeng Liu, Dominik Meier, Mariann Polgar-Turcsanyi, Pawel Karkocha, Rohit Bakshi, and Charles RG Guttmann. 2005. “Multiple sclerosis medical image analysis and information management.” J Neuroimaging, 15, 4 Suppl, Pp. 103S-117S.Abstract
Magnetic resonance imaging (MRI) has become a central tool for patient management, as well as research, in multiple sclerosis (MS). Measurements of disease burden and activity derived from MRI through quantitative image analysis techniques are increasingly being used. There are many complexities and challenges in building computerized processing pipelines to ensure efficiency, reproducibility, and quality control for MRI scans from MS patients. Such paradigms require advanced image processing and analysis technologies, as well as integrated database management systems to ensure the most utility for clinical and research purposes. This article reviews pipelines available for quantitative clinical MRI research in MS, including image segmentation, registration, time-series analysis, performance validation, visualization techniques, and advanced medical imaging software packages. To address the complex demands of the sequential processes, the authors developed a workflow management system that uses a centralized database and distributed computing system for image processing and analysis. The implementation of their system includes a web-form-based Oracle database application for information management and event dispatching, and multiple modules for image processing and analysis. The seamless integration of processing pipelines with the database makes it more efficient for users to navigate complex, multistep analysis protocols, reduces the user's learning curve, reduces the time needed for combining and activating different computing modules, and allows for close monitoring for quality-control purposes. The authors' system can be extended to general applications in clinical trials and to routine processing for image-based clinical research.
Delphine Nain, Steven Haker, Aaron Bobick, and Allen R Tannenbaum. 2005. “Multiscale 3D shape analysis using spherical wavelets.” Med Image Comput Comput Assist Interv, 8, Pt 2, Pp. 459-67.Abstract
Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data.
Janko F Verhey, Josef Wisser, Simon K Warfield, Jan Rexilius, and Ron Kikinis. 2005. “Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model.” Biomed Eng Online, 4, Pp. 19.Abstract
BACKGROUND: The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. METHODS: We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. RESULTS: It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer CONCLUSION: The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies.
Olivier Clatz, Maxime Sermesant, Pierre-Yves Bondiau, Hervé Delingette, Simon K Warfield, Grégoire Malandain, and Nicholas Ayache. 2005. “Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation.” IEEE Trans Med Imaging, 24, 10, Pp. 1334-46.Abstract
We propose a new model to simulate the three-dimensional (3-D) growth of glioblastomas multiforma (GBMs), the most aggressive glial tumors. The GBM speed of growth depends on the invaded tissue: faster in white than in gray matter, it is stopped by the dura or the ventricles. These different structures are introduced into the model using an atlas matching technique. The atlas includes both the segmentations of anatomical structures and diffusion information in white matter fibers. We use the finite element method (FEM) to simulate the invasion of the GBM in the brain parenchyma and its mechanical interaction with the invaded structures (mass effect). Depending on the considered tissue, the former effect is modeled with a reaction-diffusion or a Gompertz equation, while the latter is based on a linear elastic brain constitutive equation. In addition, we propose a new coupling equation taking into account the mechanical influence of the tumor cells on the invaded tissues. The tumor growth simulation is assessed by comparing the in-silico GBM growth with the real growth observed on two magnetic resonance images (MRIs) of a patient acquired with 6 mo difference. Results show the feasibility of this new conceptual approach and justifies its further evaluation.
Kelly H Zou, Douglas N Greve, Meng Wang, Steven D Pieper, Simon K Warfield, Nathan S White, Sanjay Manandhar, Gregory G Brown, Mark G Vangel, Ron Kikinis, and William M Wells. 2005. “Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network.” Radiology, 237, 3, Pp. 781-9.Abstract
PURPOSE: To prospectively investigate the factors--including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit--affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task. MATERIALS AND METHODS: The institutional review boards of all participating sites approved this HIPAA-compliant study. All subjects gave informed consent. Functional MR imaging data were repeatedly acquired from five healthy men aged 20-29 years who performed the same SM task at 10 sites. Five 1.5-T MR imaging units, four 3.0-T units, and one 4.0-T unit were used. The subjects performed bilateral finger tapping on button boxes with a 3-Hz audio cue and a reversing checkerboard. In a block design, 15-second epochs of alternating baseline and tasks yielded 85 acquisitions per run. Functional MR images were acquired with block-design echo-planar or spiral gradient-echo sequences. Brain activation maps standardized in a unit-sphere for the left and right hemispheres of each subject were constructed. Areas under the receiver operating characteristic curve, intraclass correlation coefficients, multiple regression analysis, and paired Student t tests were used for statistical analyses. RESULTS: Significant factors were subject (P < .005), k-space (P < .005), and field strength (P = .02) for sensitivity and subject (P = .03) and k-space (P = .05) for specificity. At 1.5-T MR imaging, mean sensitivities ranged from 7% to 32% and mean specificities were higher than 99%. At 3.0 T, mean sensitivities and specificities ranged from 42% to 85% and from 96% to 99%, respectively. At 4.0 T, mean sensitivities and specificities ranged from 41% to 73% and from 95% to 99%, respectively. Mean areas under the receiver operating characteristic curve (+/- their standard errors) were 0.77 +/- 0.05 at 1.5 T, 0.90 +/- 0.09 at 3.0 T, and 0.95 +/- 0.02 at 4.0 T, with significant differences between the 1.5- and 3.0-T examinations and between the 1.5- and 4.0-T examinations (P < .01 for both comparisons). Intraclass correlation coefficients ranged from 0.49 to 0.71. CONCLUSION: MR imaging at 3.0- and 4.0-T yielded higher reproducibility across sites and significantly better results than 1.5-T imaging. The effects of subject, k-space, and field strength on examination reproducibility were significant.
Ola Friman and Carl-Fredrik Westin. 2005. “Resampling fMRI time series.” Neuroimage, 25, 3, Pp. 859-67.Abstract
The problem of selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate issue. The use of advanced test statistics and/or the complex dependence structure of fMRI noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper, we discuss resampling methods for finding thresholds in single subject fMRI analysis. It is shown that the presence of a BOLD response in the time series biases the estimation of the temporal autocorrelation, which in turn leads to biased thresholds. Therefore, proposed resampling methods based on Fourier and wavelet transforms, which employ implicit and weak models of the temporal noise characteristic, may produce erroneous thresholds. In contrast, resampling based on a pre-whitening transform, which is driven by an explicit noise model, is robust to the presence of a BOLD response. The size of the bias is, however, largely dependent on the complexity of the experimental design. While blocked designs can induce large biases, event-related designs generate significantly smaller biases. Results supporting these claims are provided.
Olivier Clatz, Hervé Delingette, Ion-Florin Talos, Alexandra J Golby, Ron Kikinis, Ferenc A Jolesz, Nicholas Ayache, and Simon K Warfield. 2005. “Robust nonrigid registration to capture brain shift from intraoperative MRI.” IEEE Trans Med Imaging, 24, 11, Pp. 1417-27.Abstract
We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.
Neculai Archip, Robert Rohling, Peter Cooperberg, Hamid Tahmasebpour, and Simon K Warfield. 2005. “Spectral clustering algorithms for ultrasound image segmentation.” Med Image Comput Comput Assist Interv, 8, Pt 2, Pp. 862-9.Abstract
Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The extension of the NCut technique to the unsupervised clustering is first described. The novel segmentation algorithm is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. Comparisons with the classical NCut algorithm are also presented. Finally, segmentation results on other types of medical images are shown.
Haissam Haidar, Simon K Warfield, and Janet S Soul. 2005. “Talairach-based parcellation of neonatal brain magnetic resonance imaging data: validation of a new approach.” J Neuroimaging, 15, 4, Pp. 305-14.Abstract
BACKGROUND AND PURPOSE: Talairach-based parcellation (TP) of human brain magnetic resonance imaging (MRI) data has been used increasingly in clinical research to make regional measurements of brain structures in vivo. Recently, TP has been applied to pediatric research to elucidate the changes in regional brain volumes related to several neurological disorders. However, all freely available tools have been designed to parcellate adult brain MRI data. Parcellation of neonatal MRI data is very challenging owing to the lack of strong signal contrast, variability in signal intensity within tissues, and the small size and thus difficulty in identifying small structures used as landmarks for TP. Hence the authors designed and validated a new interactive tool to parcellate brain MRI data from newborns and young infants. METHODS: The authors' tool was developed as part of a postprocessing pipeline, which includes registration of multichannel MR images, segmentation, and parcellation of the segmented data. The tool employs user-friendly interactive software to visualize and assign the anatomic landmarks required for parcellation, after which the planes and parcels are generated automatically by the algorithm. The authors then performed 3 sets of validation experiments to test the precision and reliability of their tool. RESULTS: Validation experiments of intra-and interrater reliability on data obtained from newborn and 1-year-old children showed a very high sensitivity of >95% and specificity >99.9%. The authors also showed that rotating and reformatting the original MRI data results in a statistically significant difference in parcel volumes, demonstrating the importance of using a tool such as theirs that does not require realignment of the data prior to parcellation. CONCLUSIONS: To the authors' knowledge, the presented approach is the first TP method that has been developed and validated specifically for neonatal brain MRI data. Their approach would also be valuable for the analysis of brain MRI data from older children and adults.
Kelly H Zou, Kemal Tuncali, Simon K Warfield, Christian P Zentai, Daniel Worku, Paul R Morrison, and Stuart G Silverman. 2005. “Three-dimensional assessment of MR imaging-guided percutaneous cryotherapy using multi-performer repeated segmentations: the value of supervised learning.” Acad Radiol, 12, 4, Pp. 444-50.Abstract
RATIONALE AND OBJECTIVES: Accurate and reproducible segmentations of two-dimensional images are an important prerequisite for assessing tumor ablations three dimensionally (3D). We evaluated whether supervised learning methods would improve multiperformer repeated segmentations of magnetic resonance images (MRI) obtained before and after MRI-guided cryotherapy of renal cell carcinoma. MATERIALS AND METHODS: Three medical students independently performed five manual segmentations of a biopsy-proven renal cell carcinoma that was treated with percutaneous MRI-guided cryotherapy. Using pretreatment (T2-weighted fast recovery fast spin echo [FRFSE]) and posttreatment (T1-weighted, fat-suppressed, dynamically enhanced) MRIs, regions of tumor cryonecrosis were segmented. The same tasks were repeated after an experienced abdominal radiologist provided supervised learning. Segmentation sensitivity was compared with an estimated 3D-ground truth via voxel counts for regions of tumor, both before and after treatment, and for the regions of cryonecrosis. The sensitivity of each repeated segmentation was compared against the estimated ground truth using sensitivity, overlap index, and volume (mL). RESULTS: Supervised learning significantly improved posttreatment segmentation sensitivity (P = .03). With supervised learning, the ranges of the performance metrics over the segmentation performers were: pretreated tumor, sensitivity 0.902-0.999, overlap index 0.935-0.961, and volume 19.15-23.71 mL; posttreated tumor, sensitivity 0.923-0.991, overlap index 0.952-0.981, and volume 20.67-22.70 mL; in the ablation zone, sensitivity 0.938-0.969, overlap index 0.940-0.962, and volume 31.79-32.36 mL. CONCLUSIONS: Supervised learning improved multiperformer repeated segmentations of MRIs obtained before and after MRI-guided percutaneous cryotherapy of renal cell carcinoma. These methods may prove useful in aiding the 3D assessment of percutaneous tumor ablations.
Neculai Archip, Robert Rohling, Peter Cooperberg, and Hamid Tahmasebpour. 2005. “Ultrasound image segmentation using spectral clustering.” Ultrasound Med Biol, 31, 11, Pp. 1485-97.Abstract
Segmentation of ultrasound images is necessary in a variety of clinical applications, but the development of automatic techniques is still an open problem. Spectral clustering techniques have recently become popular for data and image analysis. In particular, image segmentation has been proposed via the normalized cut (NCut) criterion. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The adaptation of the NCut technique to ultrasound is described first. Segmentation is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. The success of the segmentation on these test cases warrants further research into NCut-based segmentation of ultrasound images.
Ola Friman and Carl-Fredrik Westin. 2005. “Uncertainty in white matter fiber tractography.” Med Image Comput Comput Assist Interv, 8, Pt 1, Pp. 107-14.Abstract
In this work we address the uncertainty associated with fiber paths obtained in white matter fiber tractography. This uncertainty, which arises for example from noise and partial volume effects, is quantified using a Bayesian modeling framework. The theory for estimating the probability of a connection between two areas in the brain is presented, and a new model of the local water diffusion profile is introduced. We also provide a theorem that facilitates the estimation of the parameters in this diffusion model, making the presented method simple to implement.
Kilian M Pohl, John Fisher, James J Levitt, Martha E Shenton, Ron Kikinis, Eric WL Grimson, and William M Wells. 2005. “A unifying approach to registration, segmentation, and intensity correction.” Med Image Comput Comput Assist Interv, 8, Pt 1, Pp. 310-8.Abstract
We present a statistical framework that combines the registration of an atlas with the segmentation of magnetic resonance images. We use an Expectation Maximization-based algorithm to find a solution within the model, which simultaneously estimates image inhomogeneities, anatomical labelmap, and a mapping from the atlas to the image space. An example of the approach is given for a brain structure-dependent affine mapping approach. The algorithm produces high quality segmentations for brain tissues as well as their substructures. We demonstrate the approach on a set of 22 magnetic resonance images. In addition, we show that the approach performs better than similar methods which separate the registration and segmentation problems.
Lauren O'Donnell and Carl-Fredrik Westin. 2005. “White matter tract clustering and correspondence in populations.” Med Image Comput Comput Assist Interv, 8, Pt 1, Pp. 140-7.Abstract
We present a novel method for finding white matter fiber correspondences and clusters across a population of brains. Our input is a collection of paths from tractography in every brain. Using spectral methods we embed each path as a vector in a high dimensional space. We create the embedding space so that it is common across all brains, consequently similar paths in all brains will map to points near each other in the space. By performing clustering in this space we are able to find matching fiber tract clusters in all brains. In addition, we automatically obtain correspondence of tractographic paths across brains: by selecting one or several paths of interest in one brain, the most similar paths in all brains are obtained as the nearest points in the high-dimensional space.