A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks

Abstract

Coherence and causality measures are often used to analyze the influence of one region on another during analysis of functional brain networks. The analysis methods usually involve a regression problem, where the signal of interest is decomposed into a mixture of regressor and a residual signal. In this paper, we revisit this basic problem and present solutions that provide the minimal-entropy residuals for different types of regression filters, such as causal, instantaneously causal, and noncausal filters. Using optimal prediction theory, we derive several novel frequency-domain expressions for partial coherence, causality, and conditional causality analysis. In particular, our solution provides a more accurate estimation of the frequency-domain causality compared with the classical Geweke causality measure. Using synthetic examples and in vivo resting-state functional magnetic resonance imaging data from the human connectome project, we show that the proposed solution is more accurate at revealing frequency-domain linear dependence among high-dimensional signals.
Last updated on 02/24/2023