Wu Y, Warfield SK, Tan L, Wells WM, Meier DS, van Schijndel RA, Barkhof F, Guttmann CRG. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Neuroimage. 2006;32(3):1205–15.
Abstract
PURPOSE: To automatically segment multiple sclerosis (MS) lesions into three subtypes (i.e., enhancing lesions, T1 "black holes", T2 hyperintense lesions). MATERIALS AND METHODS: Proton density-, T2- and contrast-enhanced T1-weighted brain images of 12 MR scans were pre-processed through intracranial cavity (IC) extraction, inhomogeneity correction and intensity normalization. Intensity-based statistical k-nearest neighbor (k-NN) classification was combined with template-driven segmentation and partial volume artifact correction (TDS+) for segmentation of MS lesions subtypes and brain tissue compartments. Operator-supervised tissue sampling and parameter calibration were performed on 2 randomly selected scans and were applied automatically to the remaining 10 scans. Results from this three-channel TDS+ (3ch-TDS+) were compared to those from a previously validated two-channel TDS+ (2ch-TDS+) method. The results of both the 3ch-TDS+ and 2ch-TDS+ were also compared to manual segmentation performed by experts.
Last updated on 02/24/2023