Adsorption of Block Copolymers from Selective Solvents on Curved Surfaces

Hershkovits E, Tannenbaum A, Tannenbaum R. Adsorption of Block Copolymers from Selective Solvents on Curved Surfaces. Macromolecules. 2008;41(9):3190–3198.

Abstract

We have investigated the adsorption of asymmetric poly(styrene-b-methyl methacrylate) block copolymers (PS-PMMA) from a selective solvent onto alumina (Al(2)O(3)) particles having variable and controllable radii. The solvent used was a bad solvent for the PS block (block A) and a good solvent for the PMMA block (block B), which has a higher affinity of the surface. Such a case represents a new class of adsorption, where both blocks compete for the adsorption sites of the metallic surface. Two theoretical models, the modified drops model and the perforated film model, have been evaluated as appropriate representation of such an adsorption scenario. The experimental results indicated that the adsorption of the PS-PMMA block copolymer generated a patterned surface comprised of a homogeneous melt layer of the PS block perforated with holes having a variable PMMA structure, depending on the distance from the bottom of the hole (alumina surface) and the distance from walls of the hole. The density gradient of the PMMA moiety in the hole reverted to the classical brush morphology at a critical distance from the surface of the hole.
Last updated on 02/24/2023