Publications

2009

Malcolm JG, Shenton ME, Rathi Y. Two-Tensor Tractography using a Constrained Filter. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):894–902.
We describe a technique to simultaneously estimate a weighted, positive-definite multi-tensor fiber model and perform tractography. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previous. To do this we model the signal as a weighted mixture of Gaussian tensors and perform tractography within a filter framework. Starting from a seed point, each fiber is traced to its termination using an unscented Kalman filter to simultaneously fit the local model and propagate in the most consistent direction. Further, we modify the Kalman filter to enforce model constraints, i.e. positive eigenvalues and convex weights. Despite the presence of noise and uncertainty, this provides a causal estimate of the local structure at each point along the fiber. Synthetic experiments demonstrate that this approach significantly improves the angular resolution at crossings and branchings while consistently estimating the mixture weights. In vivo experiments confirm the ability to trace out fibers in areas known to contain such crossing and branching while providing inherent path regularization.
Rehman TU, Haber E, Pryor G, Melonakos J, Tannenbaum A. 3D nonrigid registration via optimal mass transport on the GPU. Med Image Anal. 2009;13(6):931–40.
In this paper, we present a new computationally efficient numerical scheme for the minimizing flow approach for optimal mass transport (OMT) with applications to non-rigid 3D image registration. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. Our implementation also employs multigrid, and parallel methodologies on a consumer graphics processing unit (GPU) for fast computation. Although computing the optimal map has been shown to be computationally expensive in the past, we show that our approach is orders of magnitude faster then previous work and is capable of finding transport maps with optimality measures (mean curl) previously unattainable by other works (which directly influences the accuracy of registration). We give results where the algorithm was used to compute non-rigid registrations of 3D synthetic data as well as intra-patient pre-operative and post-operative 3D brain MRI datasets.
We propose an integrated registration and clustering algorithm, called "consistency clustering", that automatically constructs a probabilistic white-matter atlas from a set of multi-subject diffusion weighted MR images. We formulate the atlas creation as a maximum likelihood problem which the proposed method solves using a generalized Expectation Maximization (EM) framework. Additionally, the algorithm employs an outlier rejection and denoising strategy to produce sharp probabilistic maps of certain bundles of interest. We test this algorithm on synthetic and real data, and evaluate its stability against initialization. We demonstrate labeling a novel subject using the resulting spatial atlas and evaluate the accuracy of this labeling. Consistency clustering is a viable tool for completely automatic white-matter atlas construction for sub-populations and the resulting atlas is potentially useful for making diffusion measurements in a common coordinate system to identify pathology related changes or developmental trends.
Toews M, Wells WM, Collins L, Arbel T. Feature-based morphometry. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):109–16.
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subgroups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects.
Ou W, Raij T, Lin FH, Golland P, Hämäläinen M. Modeling adaptation effects in fMRI analysis. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):1009–17.
The standard general linear model (GLM) for rapid event-related fMRI design protocols typically ignores reduction in hemodynamic responses in successive stimuli in a train due to incomplete recovery from the preceding stimuli. To capture this adaptation effect, we incorporate a region-specific adaptation model into GLM. The model quantifies the rate of adaptation across brain regions, which is of interest in neuroscience. Empirical evaluation of the proposed model demonstrates its potential to improve detection sensitivity. In the fMRI experiments using visual and auditory stimuli, we observed that the adaptation effect is significantly stronger in the visual area than in the auditory area, suggesting that we must account for this effect to avoid bias in fMRI detection.
Tristan-Vega A, Westin CF, Aja-Fernández S. Bias of least squares approaches for diffusion tensor estimation from array coils in DT-MRI. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):919–26.
Least Squares (LS) and its weighted version are standard techniques to estimate the Diffusion Tensor (DT) from Diffusion Weighted Images (DWI). They require to linearize the problem by computing the logarithm of the DWI. For the single-coil Rician noise model it has been shown that this model does not introduce a significant bias, but for multiple array coils and parallel imaging, the noise cannot longer be modeled as Rician. As a result the validity of LS approaches is not assured. An analytical study of noise statistics for a multiple coil system is carried out, together with the Weighted LS formulation and noise analysis for this model. Results show that the bias in the computation of the components of the DT may be comparable to their variance in many cases, stressing the importance of unbiased filtering previous to DT estimation.
Niethammer M, Zach C, Melonakos J, Tannenbaum A. Near-tubular fiber bundle segmentation for diffusion weighted imaging: segmentation through frame reorientation. Neuroimage. 2009;45(1 Suppl):123–32.
This paper proposes a methodology to segment near-tubular fiber bundles from diffusion weighted magnetic resonance images (DW-MRI). Segmentation is simplified by locally reorienting diffusion information based on large-scale fiber bundle geometry. Segmentation is achieved through simple global statistical modeling of diffusion orientation. Utilizing a modification of a recent segmentation approach by Bresson et al. allows for a convex optimization formulation of the segmentation problem, combining orientation statistics and spatial regularization. The approach compares favorably with segmentation by full-brain streamline tractography.
Sabuncu MR, Yeo BTT, Van Leemput K, Vercauteren T, Golland P. Asymmetric image-template registration. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):565–73.
A natural requirement in pairwise image registration is that the resulting deformation is independent of the order of the images. This constraint is typically achieved via a symmetric cost function and has been shown to reduce the effects of local optima. Consequently, symmetric registration has been successfully applied to pairwise image registration as well as the spatial alignment of individual images with a template. However, recent work has shown that the relationship between an image and a template is fundamentally asymmetric. In this paper, we develop a method that reconciles the practical advantages of symmetric registration with the asymmetric nature of image-template registration by adding a simple correction factor to the symmetric cost function. We instantiate our model within a log-domain diffeomorphic registration framework. Our experiments show exploiting the asymmetry in image-template registration improves alignment in the image coordinates.
Poynton C, Jenkinson M, Wells WM III. Atlas-based Improved Prediction of Magnetic Field Inhomogeneity for Distortion Correction of EPI Data. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):951–9.
We describe a method for atlas-based segmentation of structural MRI for calculation of magnetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MR is used to train a classifier that segments soft tissue, air, and bone. Subject-specific fieldmaps are computed from the segmentations using a perturbation field model. Previous work has shown that distortion in echo-planar images can be corrected using predicted fieldmaps. We obtain results that agree well with acquired fieldmaps: 90% of voxel shifts from predicted fieldmaps show subvoxel disagreement with those computed from acquired fieldmaps. In addition, our fieldmap predictions show statistically significant improvement following inclusion of the atlas.
Gerber S, Tasdizen T, Joshi S, Whitaker R. On the manifold structure of the space of brain images. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):305–12.
This paper investigates an approach to model the space of brain images through a low-dimensional manifold. A data driven method to learn a manifold from a collections of brain images is proposed. We hypothesize that the space spanned by a set of brain images can be captured, to some approximation, by a low-dimensional manifold, i.e. a parametrization of the set of images. The approach builds on recent advances in manifold learning that allow to uncover nonlinear trends in data. We combine this manifold learning with distance measures between images that capture shape, in order to learn the underlying structure of a database of brain images. The proposed method is generative. New images can be created from the manifold parametrization and existing images can be projected onto the manifold. By measuring projection distance of a held out set of brain images we evaluate the fit of the proposed manifold model to the data and we can compute statistical properties of the data using this manifold structure. We demonstrate this technology on a database of 436 MR brain images.