Publications

2009

Toews M, Wells WM III. Bayesian Registration via Local Image Regions: Information, Selection and Marginalization. Inf Process Med Imaging. 2009;21:435–46.
We propose a novel Bayesian registration formulation in which image location is represented as a latent random variable. Location is marginalized to determine the maximum a priori (MAP) transform between images, which results in registration that is more robust than the alternatives of omitting locality (i.e. global registration) or jointly maximizing locality and transform (i.e. iconic registration). A mathematical link is established between the Bayesian registration formulation and the mutual information (MI) similarity measure. This leads to a novel technique for selecting informative image regions for registration, based on the MI of image intensity and spatial location. Experimental results demonstrate the effectiveness of the marginalization formulation and the MI-based region selection technique for ultrasound (US) to magnetic resonance (MR) registration in an image-guided neurosurgical application.
Lashkari D, Golland P. Exploratory fMRI analysis without spatial normalization. Inf Process Med Imaging. 2009;21:398–410.
We present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both intersubject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the data. The resulting algorithm finds a functional parcellation of the individual brains along with a set of population-level clusters, establishing correspondence between these two levels. The model eliminates the need for spatial normalization while still enabling us to fuse data from several subjects. We demonstrate the application of our method on a visual fMRI study.
Risholm P, Samsett E, Talos IF, Wells WM III. A Non-rigid Registration Framework that Accommodates Resection and Retraction. Inf Process Med Imaging. 2009;21:447–58.
Traditional non-rigid registration algorithms are incapable of accurately registering intra-operative with pre-operative images whenever tissue has been resected or retracted. In this work we present methods for detecting and handling retraction and resection. The registration framework is based on the bijective Demons algorithm using an anisotropic diffusion smoother. Retraction is detected at areas of the deformation field with high internal strain and the estimated retraction boundary is integrated as a diffusion boundary in the smoother to allow discontinuities to develop across the resection boundary. Resection is detected by a level set method evolving in the space where image intensities disagree. The estimated resection is integrated into the smoother as a diffusion sink to restrict image forces originating inside the resection from being diffused to surrounding areas. In addition, the deformation field is continuous across the diffusion sink boundary which allow us to move the boundary of the diffusion sink without changing values in the deformation field (no interpolation or extrapolation is needed). We present preliminary results on both synthetic and clinical data which clearly shows the added value of explicitly modeling these processes in a registration framework.
Sampat MP, Berger AM, Healy BC, Hildenbrand P, Vass J, Meier DS, Chitnis T, Weiner HL, Bakshi R, Guttmann CRG. Regional white matter atrophy—based classification of multiple sclerosis in cross-sectional and longitudinal data. AJNR Am J Neuroradiol. 2009;30(9):1731–9.
BACKGROUND AND PURPOSE: The different clinical subtypes of multiple sclerosis (MS) may reflect underlying differences in affected neuroanatomic regions. Our aim was to analyze the effectiveness of jointly using the inferior subolivary medulla oblongata volume (MOV) and the cross-sectional area of the corpus callosum in distinguishing patients with relapsing-remitting multiple sclerosis (RRMS), secondary-progressive multiple sclerosis (SPMS), and primary-progressive multiple sclerosis (PPMS). MATERIALS AND METHODS: We analyzed a cross-sectional dataset of 64 patients (30 RRMS, 14 SPMS, 20 PPMS) and a separate longitudinal dataset of 25 patients (114 MR imaging examinations). Twelve patients in the longitudinal dataset had converted from RRMS to SPMS. For all images, the MOV and corpus callosum were delineated manually and the corpus callosum was parcellated into 5 segments. Patients from the cross-sectional dataset were classified as RRMS, SPMS, or PPMS by using a decision tree algorithm with the following input features: brain parenchymal fraction, age, disease duration, MOV, total corpus callosum area and areas of 5 segments of the corpus callosum. To test the robustness of the classification technique, we applied the results derived from the cross-sectional analysis to the longitudinal dataset. RESULTS: MOV and central corpus callosum segment area were the 2 features retained by the decision tree. Patients with MOV >0.94 cm(3) were classified as having RRMS. Patients with progressive MS were further subclassified as having SPMS if the central corpus callosum segment area was
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Wang X, Grimson EL, Westin CF. Tractography segmentation using a hierarchical Dirichlet processes mixture model. Inf Process Med Imaging. 2009;21:101–13.
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learnt from data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learnt from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects without subsampling. We present results on multiple data sets, the largest of which has more than 120, 000 fibers.
Yeo BTT, Vercauteren T, Fillard P, Peyrat JM, Pennec X, Golland P, Ayache N, Clatz O. DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans Med Imaging. 2009;28(12):1914–28.
In this paper, we propose the DT-REFinD algorithm for the diffeomorphic nonlinear registration of diffusion tensor images. Unlike scalar images, deforming tensor images requires choosing both a reorientation strategy and an interpolation scheme. Current diffusion tensor registration algorithms that use full tensor information face difficulties in computing the differential of the tensor reorientation strategy and consequently, these methods often approximate the gradient of the objective function. In the case of the finite-strain (FS) reorientation strategy, we borrow results from the pose estimation literature in computer vision to derive an analytical gradient of the registration objective function. By utilizing the closed-form gradient and the velocity field representation of one parameter subgroups of diffeomorphisms, the resulting registration algorithm is diffeomorphic and fast. We contrast the algorithm with a traditional FS alternative that ignores the reorientation in the gradient computation. We show that the exact gradient leads to significantly better registration at the cost of computation time. Independently of the choice of Euclidean or Log-Euclidean interpolation and sum of squared differences dissimilarity measure, the exact gradient achieves better alignment over an entire spectrum of deformation penalties. Alignment quality is assessed with a battery of metrics including tensor overlap, fractional anisotropy, inverse consistency and closeness to synthetic warps. The improvements persist even when a different reorientation scheme, preservation of principal directions, is used to apply the final deformations.
Oun W, Nummenmaa A, Hämäläinen M, Golland P. Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Inf Process Med Imaging. 2009;21:88–100.
We propose a novel method, fMRI-Informed Regional Estimation (FIRE), which utilizes information from fMRI in E/MEG source reconstruction. FIRE takes advantage of the spatial alignment between the neural and the vascular activities, while allowing for substantial differences in their dynamics. Furthermore, with the regional approach, FIRE can be efficiently applied to a dense grid of sources. Inspection of our optimization procedure reveals that FIRE is related to the re-weighted minimum-norm algorithms, the difference being that the weights in the proposed approach are computed from both the current estimates and fMRI data. Analysis of both simulated and human fMRI-MEG data shows that FIRE reduces the ambiguities in source localization present in the minimum-norm estimates. Comparisons with several joint fMRI-E/MEG algorithms demonstrate robustness of FIRE in the presence of sources silent to either fMRI or E/MEG measurements.
Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N. OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot. 2009;5(4):423–34.
BACKGROUND: With increasing research on system integration for image-guided therapy (IGT), there has been a strong demand for standardized communication among devices and software to share data such as target positions, images and device status. METHOD: We propose a new, open, simple and extensible network communication protocol for IGT, named OpenIGTLink, to transfer transform, image and status messages. We conducted performance tests and use-case evaluations in five clinical and engineering scenarios. RESULTS: The protocol was able to transfer position data with submillisecond latency up to 1024 fps and images with latency of
Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, Dickerson BC, Golland P, Fischl B. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus. 2009;19(6):549–57.
Recent developments in MRI data acquisition technology are starting to yield images that show anatomical features of the hippocampal formation at an unprecedented level of detail, providing the basis for hippocampal subfield measurement. However, a fundamental bottleneck in MRI studies of the hippocampus at the subfield level is that they currently depend on manual segmentation, a laborious process that severely limits the amount of data that can be analyzed. In this article, we present a computational method for segmenting the hippocampal subfields in ultra-high resolution MRI data in a fully automated fashion. Using Bayesian inference, we use a statistical model of image formation around the hippocampal area to obtain automated segmentations. We validate the proposed technique by comparing its segmentations to corresponding manual delineations in ultra-high resolution MRI scans of 10 individuals, and show that automated volume measurements of the larger subfields correlate well with manual volume estimates. Unlike manual segmentations, our automated technique is fully reproducible, and fast enough to enable routine analysis of the hippocampal subfields in large imaging studies.