Publications

2011

Tristan-Vega A, Westin CF. Probabilistic ODF estimation from reduced HARDI data with sparse regularization. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):182–90.
High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements (nearly four times less than the standard for HARDI), we pose the estimation as an inverse problem with sparsity regularization. This allows the fast computation of a positive, unit-mass, probabilistic ODF from 14-16 samples, as we show with both synthetic diffusion signals and real HARDI data with typical parameters.
Maddah M, Miller J V, Sullivan E V, Pfefferbaum A, Rohlfing T. Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis. Med Image Comput Comput Assist Interv. 2011;14(Pt 2):191–9.
We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface generation of sheet-like fiber bundles in order too initialize the proposed clustering algorithm. Applying the new method to a population study of brain aging on 24 subjects demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial patterns of group differences.
Risholm P, Ross J, Washko GR, Wells WM III. Probabilistic Elastography: Estimating Lung Elasticity. Inf Process Med Imaging. 2011;22:699–710.
We formulate registration-based elastography in a probabilistic framework and apply it to study lung elasticity in the presence of emphysematous and fibrotic tissue. The elasticity calculations are based on a Finite Element discretization of a linear elastic biomechanical model. We marginalize over the boundary conditions (deformation) of the biomechanical model to determine the posterior distribution over elasticity parameters. Image similarity is included in the likelihood, an elastic prior is included to constrain the boundary conditions, while a Markov model is used to spatially smooth the inhomogeneous elasticity. We use a Markov Chain Monte Carlo (MCMC) technique to characterize the posterior distribution over elasticity from which we extract the most probable elasticity as well as the uncertainty of this estimate. Even though registration-based lung elastography with inhomogeneous elasticity is challenging due the problem’s highly underdetermined nature and the sparse image information available in lung CT, we show promising preliminary results on estimating lung elasticity contrast in the presence of emphysematous and fibrotic tissue.
Wassermann D, Rathi Y, Bouix S, Kubicki M, Kikinis R, Shenton M, Westin CF. White Matter Bundle Registration and Population Analysis Based on Gaussian Processes. Inf Process Med Imaging. 2011;22:320–32.
This paper proposes a method for the registration of white matter tract bundles traced from diffusion images and its extension to atlas generation, Our framework is based on a Gaussian process representation of tract density maps. Such a representation avoids the need for point-to-point correspondences, is robust to tract interruptions and reconnections and seamlessly handles the comparison and combination of white matter tract bundles. Moreover, being a parametric model, this approach has the potential to be defined in the Gaussian processes’ parameter space, without the need for resampling the fiber bundles during the registration process. We use the similarity measure of our Gaussian process framework, which is in fact an inner product, to drive a diffeomorphic registration algorithm between two sets of homologous bundles which is not biased by point-to-point correspondences or the parametrization of the tracts. We estimate a dense deformation of the underlying white matter using the bundles as anatomical landmarks and obtain a population atlas of those fiber bundles. Finally we test our results in several different bundles obtained from in-vivo data.
Risholm P, Balter J, Wells WM III. Estimation of delivered dose in radiotherapy: the influence of registration uncertainty. Med Image Comput Comput Assist Interv. 2011;14(Pt 1):548–55.
We present a probabilistic framework to estimate the accumulated radiation dose and the corresponding dose uncertainty that is delivered to important anatomical structures, e.g. the primary tumor and healthy surrounding organs, during radiotherapy. The dose uncertainty we report is a direct result of uncertainties in the estimates of the deformation which aligns the daily cone-beam CT images with the planning CT. The accumulated radiation dose is an important measure to monitor during treatment, in particular to see if it significantly deviates from the planned dose which might indicate that either the patient was not properly positioned before treatment or that the anatomy has changed due to the treatment. In the case of the latter, the treatment plan should be adaptively changed to align with the current patient anatomy. We estimate the accumulated dose distribution, and its uncertainty, retrospectively on a dataset acquired during treatment of cancer in the neck and show the dose distributions in the form of dose volume histograms.
Lee J, Lankton S, Tannenbaum A. Object tracking and target reacquisition based on 3-D range data for moving vehicles. IEEE Trans Image Process. 2011;20(10):2912–24.
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios.
Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P. A generative approach for image-based modeling of tumor growth. Inf Process Med Imaging. 2011;22:735–47.
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.
Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.
Risholm P, Golby AJ, Wells WM III. Multimodal Image Registration for Preoperative Planning and Image-guided Neurosurgical Procedures. Neurosurg Clin N Am. 2011;22(2):197–206.
Image registration is the process of transforming images acquired at different time points, or with different imaging modalities, into the same coordinate system. It is an essential part of any neurosurgical planning and navigation system because it facilitates combining images with important complementary, structural, and functional information to improve the information based on which a surgeon makes critical decisions. Brigham and Women’s Hospital (BWH) has been one of the pioneers in developing intraoperative registration methods for aligning preoperative and intraoperative images of the brain. This article presents an overview of intraoperative registration and highlights some recent developments at BWH.
Zhu L, Gao Y, Mohan V, Stillman A, Faber T, Tannenbaum A. Estimation of Myocardial Volume at Risk from CT Angiography. Proc SPIE Int Soc Opt Eng. 2011;7963:79632A-79632A6.
The determination of myocardial volume at risk distal to coronary stenosis provides important information for prognosis and treatment of coronary artery disease. In this paper, we present a novel computational framework for estimating the myocardial volume at risk in computed tomography angiography (CTA) imagery. Initially, epicardial and endocardial surfaces, and coronary arteries are extracted using an active contour method. Then, the extracted coronary arteries are projected onto the epicardial surface, and each point on this surface is associated with its closest coronary artery using the geodesic distance measurement. The likely myocardial region at risk on the epicardial surface caused by a stenosis is approximated by the region in which all its inner points are associated with the sub-branches distal to the stenosis on the coronary artery tree. Finally, the likely myocardial volume at risk is approximated by the volume in between the region at risk on the epicardial surface and its projection on the endocardial surface, which is expected to yield computational savings over risk volume estimation using the entire image volume. Furthermore, we expect increased accuracy since, as compared to prior work using the Euclidean distance, we employ the geodesic distance in this work. The experimental results demonstrate the effectiveness of the proposed approach on pig heart CTA datasets.