Matthew Toews, Christian Wachinger, Raul San Jose Estepar, and William M Wells. 2015. A Feature-Based Approach to Big Data Analysis of Medical Images. Inf Process Med Imaging, 24, Pp. 339-50.

This paper proposes an inference method well-suited to large sets of medical images. The method is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to identify approximate nearest-neighbor (NN) feature matches-in O (log N) computational complexity in the number of images N. It thus scales well to large data sets, in contrast to methods based on pair-wise image registration or feature matching requiring O(N) complexity. Our theoretical contribution is a density estimator based on a generative model that generalizes kernel density estimation and K-nearest neighbor (KNN) methods.. The estimator can be used for on-the-fly queries, without requiring explicit parametric models or an off-line training phase. The method is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT scans. Subject-level classification identifies all images of the same subjects across the entire data set despite deformation due to breathing state, including unintentional duplicate scans. State-of-the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and one-off predictions are considered correct.

Sonia Pujol, William M Wells, Carlo Pierpaoli, Caroline Brun, James Gee, Guang Cheng, Baba Vemuri, Olivier Commowick, Sylvain Prima, Aymeric Stamm, Maged Goubran, Ali Khan, Terry Peters, Peter Neher, Klaus H Maier-Hein, Yundi Shi, Antonio Tristan-Vega, Gopalkrishna Veni, Ross Whitaker, Martin Styner, Carl-Fredrik Westin, Sylvain Gouttard, Isaiah Norton, Laurent Chauvin, Hatsuho Mamata, Guido Gerig, Arya Nabavi, Alexandra Golby, and Ron Kikinis. 2015. The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery. J Neuroimaging, 25, 6, Pp. 875-82.

BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.

Toshiyuki Ohtani, Sylvain Bouix, Amanda E Lyall, Taiga Hosokawa, Yukiko Saito, Eric Melonakos, Carl-Fredrik Westin, Larry J Seidman, Jill Goldstein, Raquelle Mesholam-Gately, Tracey Petryshen, Joanne Wojcik, and Marek Kubicki. 2015. Abnormal White Matter Connections between Medial Frontal Regions Predict Symptoms in Patients with First Episode Schizophrenia. Cortex, 71, Pp. 264-76.

INTRODUCTION: The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). METHODS: After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging (DTI) methods for examining tracts between adjacent gray matter (GM) regions. RESULTS: Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p < .0001; right: p < .0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho = -.633, p = .006) and total score (rho = -.520, p = .032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho = -.644, p = .005), total score (rho = -.535, p = .027) in SANS, hallucinations (rho = -.551, p = .018), delusions (rho = -.632, p = .005) and total score (rho = -.721, p = .001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. CONCLUSIONS: The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia.

Lipeng Ning, Kawin Setsompop, Oleg Michailovich, Nikos Makris, Carl-Fredrik Westin, and Yogesh Rathi. 2015. A Compressed-Sensing Approach for Super-Resolution Reconstruction of Diffusion MRI. Inf Process Med Imaging, 24, Pp. 57-68.

We present an innovative framework for reconstructing high-spatial-resolution diffusion magnetic resonance imaging (dMRI) from multiple low-resolution (LR) images. Our approach combines the twin concepts of compressed sensing (CS) and classical super-resolution to reduce acquisition time while increasing spatial resolution. We use subpixel-shifted LR images with down-sampled and non-overlapping diffusion directions to reduce acquisition time. The diffusion signal in the high resolution (HR) image is represented in a sparsifying basis of spherical ridgelets to model complex fiber orientations with reduced number of measurements. The HR image is obtained as the solution of a convex optimization problem which can be solved using the proposed algorithm based on the alternating direction method of multipliers (ADMM). We qualitatively and quantitatively evaluate the performance of our method on two sets of in-vivo human brain data and show its effectiveness in accurately recovering very high resolution diffusion images.

Stefanie Eriksson, Samo Lasič, Markus Nilsson, Carl-Fredrik Westin, and Daniel Topgaard. 2015. NMR Diffusion-Encoding with Axial Symmetry and Variable Anisotropy: Distinguishing Between Prolate and Oblate Microscopic Diffusion Tensors with Unknown Orientation Distribution. J Chem Phys, 142, 10, Pp. 104201.

We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, DΔ, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy bΔ. Averaging of data acquired for a range of orientations of the symmetry axis of the tensor b renders the method insensitive to the orientation distribution function of the microscopic diffusion tensors. Proof-of-principle experiments are performed on water in polydomain lyotropic liquid crystals with geometries that give rise to microscopic diffusion tensors with oblate, spherical, and prolate shapes. The method could be useful for characterizing the geometry of fluid-filled compartments in porous solids, soft matter, and biological tissues.

Lipeng Ning, Carl-Fredrik Westin, and Yogesh Rathi. 2015. Estimating diffusion propagator and its moments using directional radial basis functions. IEEE Trans Med Imaging, 34, 10, Pp. 2058-78.

The ensemble average diffusion propagator (EAP) obtained from diffusion MRI (dMRI) data captures important structural properties of the underlying tissue. As such, it is imperative to derive an accurate estimate of the EAP from the acquired diffusion data. In this work, we propose a novel method for estimating the EAP by representing the diffusion signal as a linear combination of directional radial basis functions scattered in q-space. In particular, we focus on a special case of anisotropic Gaussian basis functions and derive analytical expressions for the diffusion orientation distribution function (ODF), the return-to-origin probability (RTOP), and mean-squared-displacement (MSD). A significant advantage of the proposed method is that the second and the fourth order moment tensors of the EAP can be computed explicitly. This allows for computing several novel scalar indices (from the moment tensors) such as mean-fourth-order-displacement (MFD) and generalized kurtosis (GK)-which is a generalization of the mean kurtosis measure used in diffusion kurtosis imaging. Additionally, we also propose novel scalar indices computed from the signal in q-space, called the q-space mean-squared-displacement (QMSD) and the q-space mean-fourth-order-displacement (QMFD), which are sensitive to short diffusion time scales. We validate our method extensively on data obtained from a physical phantom with known crossing angle as well as on in-vivo human brain data. Our experiments demonstrate the robustness of our method for different combinations of b-values and number of gradient directions.

Nematollah K Batmanghelich, Ardavan Saeedi, Michael Cho, Raul San Jose Estepar, and Polina Golland. 2015. Generative Method to Discover Genetically Driven Image Biomarkers. Inf Process Med Imaging, 24, Pp. 30-42.

We present a generative probabilistic approach to discovery of disease subtypes determined by the genetic variants. In many diseases, multiple types of pathology may present simultaneously in a patient, making quantification of the disease challenging. Our method seeks common co-occurring image and genetic patterns in a population as a way to model these two different data types jointly. We assume that each patient is a mixture of multiple disease subtypes and use the joint generative model of image and genetic markers to identify disease subtypes guided by known genetic influences. Our model is based on a variant of the so-called topic models that uncover the latent structure in a collection of data. We derive an efficient variational inference algorithm to extract patterns of co-occurrence and to quantify the presence of heterogeneous disease processes in each patient. We evaluate the method on simulated data and illustrate its use in the context of Chronic Obstructive Pulmonary Disease (COPD) to characterize the relationship between image and genetic signatures of COPD subtypes in a large patient cohort.

Christian Wachinger, Karl Fritscher, Greg Sharp, and Polina Golland. 2015. Contour-Driven Atlas-Based Segmentation. IEEE Trans Med Imaging, 34, 12, Pp. 2492-505.

We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images.

Christian Wachinger, Polina Golland, Caroline Magnain, Bruce Fischl, and Martin Reuter. 2015. Multi-modal Robust Inverse-consistent Linear Registration. Hum Brain Mapp, 36, 4, Pp. 1365-80.

Registration performance can significantly deteriorate when image regions do not comply with model assumptions. Robust estimation improves registration accuracy by reducing or ignoring the contribution of voxels with large intensity differences, but existing approaches are limited to monomodal registration. In this work, we propose a robust and inverse-consistent technique for cross-modal, affine image registration. The algorithm is derived from a contextual framework of image registration. The key idea is to use a modality invariant representation of images based on local entropy estimation, and to incorporate a heteroskedastic noise model. This noise model allows us to draw the analogy to iteratively reweighted least squares estimation and to leverage existing weighting functions to account for differences in local information content in multimodal registration. Furthermore, we use the nonparametric windows density estimator to reliably calculate entropy of small image patches. Finally, we derive the Gauss-Newton update and show that it is equivalent to the efficient second-order minimization for the fully symmetric registration approach. We illustrate excellent performance of the proposed methods on datasets containing outliers for alignment of brain tumor, full head, and histology images.

Christian Wachinger, Polina Golland, William Kremen, Bruce Fischl, Martin Reuter, and Alzheimer s Disease Neuroimaging Initiative. 2015. BrainPrint: A Discriminative Characterization of Brain Morphology. Neuroimage, 109, Pp. 232-48.

We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.