Publications

2011

Tokuda J, Mamata H, Gill RR, Hata N, Kikinis R, Padera RF, Lenkinski RE, Sugarbaker DJ, Hatabu H. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging. J Magn Reson Imaging. 2011;33(4):968–73.
PURPOSE: To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. MATERIALS AND METHODS: Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared.
Donnell LJO, Westin CF. An Introduction to Diffusion Tensor Image Analysis. Neurosurg Clin N Am. 2011;22(2):185–96.
Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses.
Nir G, Tannenbaum A. Temporal Registration of Partial Data using Particle Filtering. Proc Int Conf Image Proc. 2011;:2177–80.
We propose a particle filtering framework for rigid registration of a model image to a time-series of partially observed images. The method incorporates a model-based segmentation technique in order to track the pose dynamics of an underlying observed object with time. An applicable algorithm is derived by employing the proposed framework for registration of a 3D model of an anatomical structure, which was segmented from preoperative images, to consecutive axial 2D slices of a magnetic resonance imaging (MRI) scan, which are acquired intraoperatively over time. The process is fast and robust with respect to image noise and clutter, variations of illumination, and different imaging modalities.
Depa M, Holmvang G, Schmidt EJ, Golland P, Sabuncu MR. Towards Effcient Label Fusion by Pre-Alignment of Training Data. Med Image Comput Comput Assist Interv. 2011;14(WS):38–46.
Label fusion is a multi-atlas segmentation approach that explicitly maintains and exploits the entire training dataset, rather than a parametric summary of it. Recent empirical evidence suggests that label fusion can achieve significantly better segmentation accuracy over classical parametric atlas methods that utilize a single coordinate frame. However, this performance gain typically comes at an increased computational cost due to the many pairwise registrations between the novel image and training images. In this work, we present a modified label fusion method that approximates these pairwise warps by first pre-registering the training images via a diffeomorphic groupwise registration algorithm. The novel image is then only registered once, to the template image that represents the average training subject. The pairwise spatial correspondences between the novel image and training images are then computed via concatenation of appropriate transformations. Our experiments on cardiac MR data suggest that this strategy for nonparametric segmentation dramatically improves computational efficiency, while producing segmentation results that are statistically indistinguishable from those obtained with regular label fusion. These results suggest that the key benefit of label fusion approaches is the underlying nonparametric inference algorithm, and not the multiple pairwise registrations.
Sundaram P, Mulkern RV, Wells WM, Triantafyllou C, Loddenkemper T, Bubrick EJ, Orbach DB. An empirical investigation of motion effects in eMRI of interictal epileptiform spikes. Magn Reson Imaging. 2011;29(10):1401–9.
We recently developed a functional neuroimaging technique called encephalographic magnetic resonance imaging (eMRI). Our method acquires rapid single-shot gradient-echo echo-planar MRI (repetition time=47 ms); it attempts to measure an MR signal more directly linked to neuronal electromagnetic activity than existing methods. To increase the likelihood of detecting such an MR signal, we recorded concurrent MRI and scalp electroencephalography (EEG) during fast (20-200 ms), localized, high-amplitude (>50 μV on EEG) cortical discharges in a cohort of focal epilepsy patients. Seen on EEG as interictal spikes, these discharges occur in between seizures and induced easily detectable MR magnitude and phase changes concurrent with the spikes with a lag of milliseconds to tens of milliseconds. Due to the time scale of the responses, localized changes in blood flow or hemoglobin oxygenation are unlikely to cause the MR signal changes that we observed. While the precise underlying mechanisms are unclear, in this study, we empirically investigate one potentially important confounding variable - motion. Head motion in the scanner affects both EEG and MR recording. It can produce brief "spike-like" artifacts on EEG and induce large MR signal changes similar to our interictal spike-related signal changes. In order to explore the possibility that interictal spikes were associated with head motions (although such an association had never been reported), we had previously tracked head position in epilepsy patients during interictal spikes and explicitly demonstrated a lack of associated head motion. However, that study was performed outside the MR scanner, and the root-mean-square error in the head position measurement was 0.7 mm. The large inaccuracy in this measurement therefore did not definitively rule out motion as a possible signal generator. In this study, we instructed healthy subjects to make deliberate brief (
Pohl KM, Konukoglu E, Novellas S, Ayache N, Fedorov A, Talos IF, Golby A, Wells WM, Kikinis R, Black PM. A new metric for detecting change in slowly evolving brain tumors: validation in meningioma patients. Neurosurgery. 2011;68(1 Suppl Operative):225–33.
BACKGROUND: Change detection is a critical component in the diagnosis and monitoring of many slowly evolving pathologies. OBJECTIVE: This article describes a semiautomatic monitoring approach using longitudinal medical images. We test the method on brain scans of patients with meningioma, which experts have found difficult to monitor because the tumor evolution is very slow and may be obscured by artifacts related to image acquisition. METHODS: We describe a semiautomatic procedure targeted toward identifying difficult-to-detect changes in brain tumor imaging. The tool combines input from a medical expert with state-of-the-art technology. The software is easy to calibrate and, in less than 5 minutes, returns the total volume of tumor change in mm. We test the method on postgadolinium, T1-weighted magnetic resonance images of 10 patients with meningioma and compare our results with experts’ findings. We also perform benchmark testing with synthetic data. RESULTS: Our experiments indicated that experts’ visual inspections are not sensitive enough to detect subtle growth. Measurements based on experts’ manual segmentations were highly accurate but also labor intensive. The accuracy of our approach was comparable to the experts’ results. However, our approach required far less user input and generated more consistent measurements. CONCLUSION: The sensitivity of experts’ visual inspection is often too low to detect subtle growth of meningiomas from longitudinal scans. Measurements based on experts’ segmentation are highly accurate but generally too labor intensive for standard clinical settings. We described an alternative metric that provides accurate and robust measurements of subtle tumor changes while requiring a minimal amount of user input.
Le Faucheur X, Hershkovits E, Tannenbaum R, Tannenbaum A. Nonparametric clustering for studying RNA conformations. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(6):1604–19.
The local conformation of RNA molecules is an important factor in determining their catalytic and binding properties. The analysis of such conformations is particularly difficult due to the large number of degrees of freedom, such as the measured torsion angles per residue and the interatomic distances among interacting residues. In this work, we use a nearest-neighbor search method based on the statistical mechanical Potts model to find clusters in the RNA conformational space. The proposed technique is mostly automatic and may be applied to problems, where there is no prior knowledge on the structure of the data space in contrast to many other clustering techniques. Results are reported for both single residue conformations, where the parameter set of the data space includes four to seven torsional angles, and base pair geometries, where the data space is reduced to two dimensions. Moreover, new results are reported for base stacking geometries. For the first two cases, i.e., single residue conformations and base pair geometries, we get a very good match between the results of the proposed clustering method and the known classifications with only few exceptions. For the case of base stacking geometries, we validate our classification with respect to geometrical constraints and describe the content, and the geometry of the new clusters.
Kubicki M, Alvarado JL, Westin CF, Tate DF, Markant D, Terry DP, Whitford TJ, De Siebenthal J, Bouix S, McCarley RW, Kikinis R, Shenton ME. Stochastic tractography study of Inferior Frontal Gyrus anatomical connectivity in schizophrenia. Neuroimage. 2011;55(4):1657–64.
BACKGROUND: Abnormalities within language-related anatomical structures have been associated with clinical symptoms and with language and memory deficits in schizophrenia. Recent studies suggest disruptions in functional connectivity within the Inferior Frontal Gyrus (IFG) network in schizophrenia. However, due to technical challenges, anatomical connectivity abnormalities within this network and their involvement in clinical and cognitive deficits have not been studied. MATERIAL AND METHODS: Diffusion and anatomical scans were obtained from 23 chronic schizophrenia patients and 23 matched controls. The IFG was automatically segmented, and its white matter connections extracted and measured with newly-developed stochastic tractography tools. Correlations between anatomical structures and measures of semantic processing were also performed. RESULTS: White Matter connections between the IFG and posterior brain regions followed two distinct pathways: dorsal and ventral. Both demonstrated left lateralization, but ventral pathway abnormalities were only found in schizophrenia. IFG volumes also showed left lateralization and abnormalities in schizophrenia. Further, despite similar laterality and abnormality patterns, IFG volumes and white matter connectivity were not correlated with each other in either group. Interestingly, measures of semantic processing correlated with white matter connectivity in schizophrenia and with gray matter volumes in controls. Finally, hallucinations were best predicted by both gray matter and white matter measures together. CONCLUSIONS: Our results suggest abnormalities within the ventral IFG network in schizophrenia, with white matter abnormalities better predicting semantic deficits. The lack of a statistical relationship between coexisting gray and white matter deficits might suggest their different origin and the necessity for a multimodal approach in future schizophrenia studies.
Agar NYR, Golby AJ, Ligon KL, Norton I, Mohan V, Wiseman JM, Tannenbaum A, Jolesz FA. Development of stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68(2):280–89.
BACKGROUND: Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. OBJECTIVE: To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. METHODS: Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. RESULTS: Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. CONCLUSION: The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of any organ and with a rapidity that allows real-time analysis.
Lienhard S, Malcolm JG, Westin CF, Rathi Y. A full bi-tensor neural tractography algorithm using the unscented Kalman filter. EURASIP J Adv Signal Process. 2011;2011.
We describe a technique that uses tractography to visualize neural pathways in human brains by extending an existing framework that uses overlapping Gaussian tensors to model the signal. At each point on the fiber, an unscented Kalman filter is used to find the most consistent direction as a mixture of previous estimates and of the local model. In our previous framework, the diffusion ellipsoid had a cylindrical shape, i.e., the diffusion tensor’s second and third eigenvalues were identical. In this paper, we extend the tensor representation so that the diffusion tensor is represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to trace fibers in areas containing crossings or branchings, and the tests also confirm the superiority of using a full tensor representation over the simplified model.