Publications

2006

Pohl KM, Fisher J, Shenton M, McCarley RW, Grimson EL, Kikinis R, Wells WM. Logarithm odds maps for shape representation. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):955–63.
The concept of the Logarithm of the Odds (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology. Here, we utilize LogOdds for a shape representation that demonstrates desirable properties for medical imaging. For example, the representation encodes the shape of an anatomical structure as well as the variations within that structure. These variations are embedded in a vector space that relates to a probabilistic model. We apply our representation to a voxel based segmentation algorithm. We do so by embedding the manifold of Signed Distance Maps (SDM) into the linear space of LogOdds. The LogOdds variant is superior to the SDM model in an experiment segmenting 20 subjects into subcortical structures. We also use LogOdds in the non-convex interpolation between space conditioned distributions. We apply this model to a longitudinal schizophrenia study using quadratic splines. The resulting time-continuous simulation of the schizophrenic aging process has a higher accuracy then a model based on convex interpolation.
Ziyan U, Tuch D, Westin CF. Segmentation of thalamic nuclei from DTI using spectral clustering. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):807–14.
Recent work shows that diffusion tensor imaging (DTI) can help resolving thalamic nuclei based on the characteristic fiber orientation of the corticothalamic/thalamocortical striations within each nucleus. In this paper we describe a novel segmentation method based on spectral clustering. We use Markovian relaxation to handle spatial information in a natural way, and we explicitly minimize the normalized cut criteria of the spectral clustering for a better optimization. Using this modified spectral clustering algorithm, we can resolve the organization of the thalamic nuclei into groups and subgroups solely based on the voxel affinity matrix, avoiding the need for explicitly defined cluster centers. The identification of nuclear subdivisions can facilitate localization of functional activation and pathology to individual nuclear subgroups.
Kindlmann G, Tricoche X, Westin CF. Anisotropy creases delineate white matter structure in diffusion tensor MRI. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):126–33.
Current methods for extracting models of white matter architecture from diffusion tensor MRI are generally based on fiber tractography. For some purposes a compelling alternative may be found in analyzing the first and second derivatives of diffusion anisotropy. Anisotropy creases are ridges and valleys of locally extremal anisotropy, where the gradient of anisotropy is orthogonal to one or more eigenvectors of its Hessian. We propose that anisotropy creases provide a basis for extracting a skeleton of white matter pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and valleys of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts. We describe a crease extraction algorithm that generates high-quality polygonal models of crease surfaces, then demonstrate the method on a measured diffusion tensor dataset, and visualize the result in combination with tractography to confirm its anatomic relevance.
Bergmann O, Kindlmann G, Lundervold A, Westin CF. Diffusion k-tensor estimation from Q-ball imaging using discretized principal axes. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):268–75.
A reoccurring theme in the diffusion tensor imaging literature is the per-voxel estimation of a symmetric 3 x 3 tensor describing the measured diffusion. In this work we attempt to generalize this approach by calculating 2 or 3 or up to k diffusion tensors for each voxel. We show that our procedure can more accurately describe the diffusion particularly when crossing fibers or fiber-bundles are present in the datasets.
Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R, Westin CF. 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography. Med Image Comput Comput Assist Interv. 2006;9(Pt 1):109–16.
A classical neural tract tracer, WGA-HRP, was injected at multiple sites within the brain of a macaque monkey. Histological sections of the labeled fiber tracts were reconstructed in 3D, and the fibers were segmented and registered with the anatomical post-mortem MRI from the same animal. Fiber tracing along the same pathways was performed on the DTI data using a classical diffusion tracing technique. The fibers derived from the DTI were compared with those segmented from the histology in order to evaluate the performance of DTI fiber tracing. While there was generally good agreement between the two methods, our results reveal certain limitations of DTI tractography, particularly at regions of fiber tract crossing or bifurcation.
Estepar RSJ, Washko GG, Silverman EK, Reilly JJ, Kikinis R, Westin CF. Accurate airway wall estimation using phase congruency. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):125–34.
Quantitative analysis of computed tomographic (CT) images of the lungs is becoming increasingly useful in the medical and surgical management of subjects with Chronic Obstructive Pulmonary Disease (COPD). Current methods for the assessment of airway wall work well in idealized models of the airway. We propose a new method for airway wall detection based on phase congruency. This method does not rely on either a specific model of the airway or the point spread function of the scanner. Our results show that our method gives a better localization of the airway wall than "full width at a half max" and is less sensitive to different reconstruction kernels and radiation doses.
Kuroki N, Shenton ME, Salisbury DF, Hirayasu Y, Onitsuka T, Ersner-Hershfield H, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW. Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am J Psychiatry. 2006;163(12):2103–10.
OBJECTIVE: Magnetic resonance imaging (MRI) studies of schizophrenia reveal temporal lobe structural brain abnormalities in the superior temporal gyrus and the amygdala-hippocampal complex. However, the middle and inferior temporal gyri have received little investigation, especially in first-episode schizophrenia. METHOD: High-spatial-resolution MRI was used to measure gray matter volume in the inferior, middle, and superior temporal gyri in 20 patients with first-episode schizophrenia, 20 patients with first-episode affective psychosis, and 23 healthy comparison subjects. RESULTS: Gray matter volume in the middle temporal gyrus was smaller bilaterally in patients with first-episode schizophrenia than in comparison subjects and in patients with first-episode affective psychosis. Posterior gray matter volume in the inferior temporal gyrus was smaller bilaterally in both patient groups than in comparison subjects. Among the superior, middle, and inferior temporal gyri, the left posterior superior temporal gyrus gray matter in the schizophrenia group had the smallest volume, the greatest percentage difference, and the largest effect size in comparisons with healthy comparison subjects and with affective psychosis patients. CONCLUSIONS: Smaller gray matter volumes in the left and right middle temporal gyri and left posterior superior temporal gyrus were present in schizophrenia but not in affective psychosis at first hospitalization. In contrast, smaller bilateral posterior inferior temporal gyrus gray matter volume is present in both schizophrenia and affective psychosis at first hospitalization. These findings suggest that smaller gray matter volumes in the dorsal temporal lobe (superior and middle temporal gyri) may be specific to schizophrenia, whereas smaller posterior inferior temporal gyrus gray matter volumes may be related to pathology common to both schizophrenia and affective psychosis.
Goldberg-Zimring D, Warfield SK. Novel image processing techniques to better understand white matter disruption in multiple sclerosis. Autoimmun Rev. 2006;5(8):544–8.
In Multiple Sclerosis (MS) patients, conventional magnetic resonance imaging (MRI) shows a pattern of white matter (WM) disruption but may also overlook some WM damage. Diffusion tensor MRI (DT-MRI) can provide important in-vivo information about fiber direction that is not provided by conventional MRI. The geometry of diffusion tensors can quantitatively characterize the local structure in tissues. The integration of both conventional MRI and DT-MRI measures together with connectivity-based regional assessment provide a better understanding of the nature and the location of WM abnormalities. Image processing and visualization techniques have been developed and applied to study conventional MRI and DT-MRI of MS patients. These include methods of: Image Segmentation for identifying the different areas of the brain as well as to discriminate normal from abnormal WM, Computerized Atlases, which include structural information obtained from a set of subjects, and Tractographies which can aid in the delineation of WM fiber tracts by tracking connected diffusion tensors. These new techniques hold out the promise of improving our understanding of WM architecture and its disruption in diseases such as MS. In the present study, we review the work that has been done in the development of these techniques and illustrate their applications.
Hershkovitz E, Sapiro G, Tannenbaum A, Williams LD. Statistical analysis of RNA backbone. IEEE/ACM Trans Comput Biol Bioinform. 2006;3(1):33–46.
Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones.