Publications

2023

Zanao TA, Seitz-Holland J, O’Donnell LJ, Zhang F, Rathi Y, Lopes TM, Pimentel-Silva LR, Yassuda CL, Makris N, Shenton ME, Bouix S, Lyall AE, Cendes F. Hippocampal Sclerosis on White Matter Tracts and Memory in Individuals With Mesial Temporal Lobe Epilepsy. Epilepsia open. 2023;8(3):1111–1122.

OBJECTIVE: To investigate how the presence/side of hippocampal sclerosis (HS) are related to the white matter structure of cingulum bundle (CB), arcuate fasciculus (AF), and inferior longitudinal fasciculus (ILF) in mesial temporal lobe epilepsy (MTLE).

METHODS: We acquired diffusion-weighted magnetic resonance imaging (MRI) from 86 healthy and 71 individuals with MTLE (22 righ-HS; right-HS, 34 left-HS; left-HS, and 15 nonlesional MTLE). We utilized two-tensor tractography and fiber clustering to compare fractional anisotropy (FA) of each side/tract between groups. Additionally, we examined the association between FA and nonverbal (WMS-R) and verbal (WMS-R, RAVLT codification) memory performance for MTLE individuals.

RESULTS: White matter abnormalities depended on the side and presence of HS. The left-HS demonstrated widespread abnormalities for all tracts, the right-HS showed lower FA for ipsilateral tracts and the nonlesional MTLE group did not differ from healthy individuals. Results indicate no differences in verbal/nonverbal memory performance between the groups, but trend-level associations between higher FA of visual memory and the left CB (r = 0.286, P = 0.018), verbal memory (RAVLT) and -left CB (r = 0.335, P = 0.005), -right CB (r = 0.286, P = 0.016), and -left AF (r = 0.287, P = 0.017).

SIGNIFICANCE: Our results highlight that the presence and side of HS are crucial to understand the pathophysiology of MTLE. Specifically, left-sided HS seems to be related to widespread bilateral white matter abnormalities. Future longitudinal studies should focus on developing diagnostic and treatment strategies dependent on HS's presence/side.

Costello H, Schrag AE, Howard R, Roiser JP. Dissociable Effects of Dopaminergic Medications on Depression Symptom Dimensions in Parkinson’s Disease. medRxiv : the preprint server for health sciences. 2023;.

BACKGROUND: Depression in Parkinson's disease (PD) is common, disabling and responds poorly to standard antidepressant medication. Motivational symptoms of depression, such as apathy and anhedonia, are particularly prevalent in depression in PD and predict poor response to antidepressant treatment. Loss of dopaminergic innervation of the striatum is associated with emergence of motivational symptoms in PD, and mood fluctuations correlate with dopamine availability. Accordingly, optimising dopaminergic treatment for PD can improve depressive symptoms, and dopamine agonists have shown promising effects in improving apathy. However, the differential effect of antiparkinsonian medication on symptom dimensions of depression is not known.

AIMS: We hypothesised that there would be dissociable effects of dopaminergic medications on different depression symptom dimensions. We predicted that dopaminergic medication would specifically improve motivational symptoms, but not other symptoms, of depression. We also hypothesised that antidepressant effects of dopaminergic medications with mechanisms of action reliant on pre-synaptic dopamine neuron integrity would attenuate as pre-synaptic dopaminergic neurodegeneration progresses.

METHODS: We analysed data from a longitudinal study of 412 newly diagnosed PD patients followed over five years in the Parkinson's Progression Markers Initiative cohort. Medication state for individual classes of Parkinson's medications was recorded annually. Previously validated "motivation" and "depression" dimensions were derived from the 15-item geriatric depression scale. Dopaminergic neurodegeneration was measured using repeated striatal dopamine transporter (DAT) imaging.

RESULTS: Linear mixed-effects modelling was performed across all simultaneously acquired data points. Dopamine agonist use was associated with relatively fewer motivation symptoms as time progressed (interaction: β=-0.07, 95%CI [-0.13,-0.01], p=0.015) but had no effect on the depression symptom dimension (p=0.6). In contrast, monoamine oxidase-B (MAO-B) inhibitor use was associated with relatively fewer depression symptoms across all years (β=-0.41, 95%CI [-0.81,-0.01], p=0.047). No associations were observed between either depression or motivation symptoms and levodopa or amantadine use. There was a significant interaction between striatal DAT binding and MAO-B inhibitor use on motivation symptoms: MAO-B inhibitor use was associated with lower motivation symptoms in patients with higher striatal DAT binding (interaction: β=-0.24, 95%CI [-0.43,-0.05], p=0.012). No other medication effects were moderated by striatal DAT binding measures.

CONCLUSIONS: We identified dissociable associations between dopaminergic medications and different dimensions of depression in PD. Dopamine agonists may be effective for treatment of motivational symptoms of depression. In contrast, MAO-B inhibitors may improve both depressive and motivation symptoms, albeit the latter effect appears to be attenuated in patients with more severe striatal dopaminergic neurodegeneration, which may be a consequence of dependence on pre-synaptic dopaminergic neuron integrity.

Nejatbakhsh A, Dey N, Venkatachalam V, Yemini E, Paninski L, Varol E. Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks. Information processing in medical imaging : proceedings of the . conference. 2023;13939:332–343.

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

Groves LA, Keita M, Talla S, Kikinis R, Fichtinger G, Mousavi P, Camara M. A Review of Low-cost Ultrasound Compatible Phantoms. IEEE Transactions on Biomedical Engineering. 2023;:1–12.

Ultrasound-compatible phantoms are used to develop novel US-based systems and train simulated medical interventions. The price difference between lab-made and commercially available ultrasound-compatible phantoms lead to the publication of many papers categorized as low-cost in the literature. The aim of this review was to improve the phantom selection process by summarizing the pertinent literature. We compiled papers on US-compatible spine, prostate, vascular, breast, kidney, and li ver phantoms. We reviewed papers for cost and accessibility, providing an overview of the materials, construction time, shelf life, needle insertion limits, and manufacturing and evaluation methods. This information was summarized by anatomy. The clinical application associated with each phantom was also reported for those interested in a particular intervention. Techniques and common practices for building low-cost phantoms were provided. Overall, this paper aims to summarize a breadth of ultrasound-compatible phantom research to enable informed phantom methods selection.

Xu J, Moyer D, Gagoski B, Iglesias JE, Grant E, Golland P, Adalsteinsson E. NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI. IEEE transactions on medical imaging. 2023;42(6):1707–1719.

Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving subjects, e. g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the state-of-the-art algorithms.

Brabec J, Friedjungová M, Vašata D, Englund E, Bengzon J, Knutsson L, Szczepankiewicz F, van Westen D, Sundgren PC, Nilsson M. Meningioma Microstructure Assessed by Diffusion MRI: An Investigation of the Source of Mean Diffusivity and Fractional Anisotropy by Quantitative Histology. NeuroImage Clin. 2023;37:103365.

BACKGROUND: Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level.

PURPOSE: To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters.

MATERIALS AND METHODS: We performed ex-vivo dMRI at 200 μm isotropic resolution and histological imaging of 16 excised meningioma tumor samples. Diffusion tensor imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAIP). Histology images were analyzed in terms of cell nuclei density (CD) and structure anisotropy (SA; obtained from structure tensor analysis) and were used separately in a regression analysis to predict MD and FAIP, respectively. A convolutional neural network (CNN) was also trained to predict the dMRI parameters from histology patches. The association between MRI and histology was analyzed in terms of out-of-sample (R2OS) on the intra-tumor level and within-sample R2 across tumors. Regions where the dMRI parameters were poorly predicted from histology were analyzed to identify features apart from CD and SA that could influence MD and FAIP, respectively.

RESULTS: Cell density assessed by histology poorly explained intra-tumor variability of MD at the mesoscopic level (200 μm), as median R2OS = 0.04 (interquartile range 0.01-0.26). Structure anisotropy explained more of the variation in FAIP (median R2OS = 0.31, 0.20-0.42). Samples with low R2OS for FAIP exhibited low variations throughout the samples and thus low explainable variability, however, this was not the case for MD. Across tumors, CD and SA were clearly associated with MD (R2 = 0.60) and FAIP (R2 = 0.81), respectively. In 37% of the samples (6 out of 16), cell density did not explain intra-tumor variability of MD when compared to the degree explained by the CNN. Tumor vascularization, psammoma bodies, microcysts, and tissue cohesivity were associated with bias in MD prediction based solely on CD. Our results support that FAIP is high in the presence of elongated and aligned cell structures, but low otherwise.

CONCLUSION: Cell density and structure anisotropy account for variability in MD and FAIP across tumors but cell density does not explain MD variations within the tumor, which means that low or high values of MD locally may not always reflect high or low tumor cell density. Features beyond cell density need to be considered when interpreting MD.

Wang CJ, Rost NS, Golland P. Spatial-Intensity Transforms for Medical Image-to-Image Translation. IEEE transactions on medical imaging. 2023;42(11):3362–3373.

Image-to-image translation has seen major advances in computer vision but can be difficult to apply to medical images, where imaging artifacts and data scarcity degrade the performance of conditional generative adversarial networks. We develop the spatial-intensity transform (SIT) to improve output image quality while closely matching the target domain. SIT constrains the generator to a smooth spatial transform (diffeomorphism) composed with sparse intensity changes. SIT is a lightweight, modular network component that is effective on various architectures and training schemes. Relative to unconstrained baselines, this technique significantly improves image fidelity, and our models generalize robustly to different scanners. Additionally, SIT provides a disentangled view of anatomical and textural changes for each translation, making it easier to interpret the model's predictions in terms of physiological phenomena. We demonstrate SIT on two tasks: predicting longitudinal brain MRIs in patients with various stages of neurodegeneration, and visualizing changes with age and stroke severity in clinical brain scans of stroke patients. On the first task, our model accurately forecasts brain aging trajectories without supervised training on paired scans. On the second task, it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. As conditional generative models become increasingly versatile tools for visualization and forecasting, our approach demonstrates a simple and powerful technique for improving robustness, which is critical for translation to clinical settings. Source code is available at github.com/clintonjwang/spatial-intensity-transforms.

He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O’Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Human brain mapping. 2023;44(17):6055–6073.

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.

Juvekar P, Dorent R, Kögl F, Torio E, Barr C, Rigolo L, Galvin C, Jowkar N, Kazi A, Haouchine N, Cheema H, Navab N, Pieper S, Wells WM, Bi WL, Golby A, Frisken S, Kapur T. ReMIND: The Brain Resection Multimodal Imaging Database. medRxiv : the preprint server for health sciences. 2023;.

The standard of care for brain tumors is maximal safe surgical resection as the first step. Neuronavigation augments the surgeon's ability to achieve this but loses validity due to brain shift as surgery progresses. Moreover, many gliomas are difficult to distinguish from adjacent healthy brain tissue. Intraoperative MRI (iMRI) is a useful surgical adjunct that can be used to visualize the residual tumor and brain shift. Intraoperative ultrasound (iUS) serves a similar purpose, while also being faster and easier to incorporate into the workflow. However, it provides lower contrast between tumor tissue and normal brain tissue as compared to intraoperative MRI. With the success of data-hungry Artificial Intelligence (AI)/Machine Learning (ML) algorithms in advancing the state of the art in medical image analysis, the benefits of sharing well-curated data can not be overstated. To this end, we provide here the largest publicly-available MRI and intraoperative ultrasound imaging database of surgically treated brain tumors, including gliomas (n=92), metastases (n=11), and others (n=11). This collection contains 369 preoperative MRI series, 320 3D intraoperative ultrasound series, 301 intraoperative MRI series, and 356 segmentations collected from 114 consecutive patients at a single institution. We expect this data to be a resource for computational research in brain shift and image analysis as well as for neurosurgical training in the interpretation of intraoperative ultrasound and iMRI.

Costello H, Schrag AE, Howard R, Roiser JP. Dissociable effects of dopaminergic medications on depression symptom dimensions in Parkinson’s disease. medRxiv : the preprint server for health sciences. 2023;.

BACKGROUND: Depression in Parkinson's disease (PD) is common, disabling and responds poorly to standard antidepressant medication. Motivational symptoms of depression, such as apathy and anhedonia, are particularly prevalent in depression in PD and predict poor response to antidepressant treatment. Loss of dopaminergic innervation of the striatum is associated with emergence of motivational symptoms in PD, and mood fluctuations correlate with dopamine availability. Accordingly, optimising dopaminergic treatment for PD can improve depressive symptoms, and dopamine agonists have shown promising effects in improving apathy. However, the differential effect of antiparkinsonian medication on symptom dimensions of depression is not known.

AIMS: We hypothesised that there would be dissociable effects of dopaminergic medications on different depression symptom dimensions. We predicted that dopaminergic medication would specifically improve motivational symptoms, but not other symptoms, of depression. We also hypothesised that antidepressant effects of dopaminergic medications with mechanisms of action reliant on pre-synaptic dopamine neuron integrity would attenuate as pre-synaptic dopaminergic neurodegeneration progresses.

METHODS: We analysed data from a longitudinal study of 412 newly diagnosed PD patients followed over five years in the Parkinson's Progression Markers Initiative cohort. Medication state for individual classes of Parkinson's medications was recorded annually. Previously validated "motivation" and "depression" dimensions were derived from the 15-item geriatric depression scale. Dopaminergic neurodegeneration was measured using repeated striatal dopamine transporter (DAT) imaging.

RESULTS: Linear mixed-effects modelling was performed across all simultaneously acquired data points. Dopamine agonist use was associated with relatively fewer motivation symptoms as time progressed (interaction: β=-0.07, 95%CI [-0.13,-0.01], p=0.015) but had no effect on the depression symptom dimension (p=0.6). In contrast, monoamine oxidase-B (MAO-B) inhibitor use was associated with relatively fewer depression symptoms across all years (β=-0.41, 95%CI [-0.81,-0.01], p=0.047). No associations were observed between either depression or motivation symptoms and levodopa or amantadine use. There was a significant interaction between striatal DAT binding and MAO-B inhibitor use on motivation symptoms: MAO-B inhibitor use was associated with lower motivation symptoms in patients with higher striatal DAT binding (interaction: β=-0.24, 95%CI [-0.43,-0.05], p=0.012). No other medication effects were moderated by striatal DAT binding measures.

CONCLUSIONS: We identified dissociable associations between dopaminergic medications and different dimensions of depression in PD. Dopamine agonists may be effective for treatment of motivational symptoms of depression. In contrast, MAO-B inhibitors may improve both depressive and motivation symptoms, albeit the latter effect appears to be attenuated in patients with more severe striatal dopaminergic neurodegeneration, which may be a consequence of dependence on pre-synaptic dopaminergic neuron integrity.