Publications by Year: 2023

2023

Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Cetin-Karayumak S, Kubicki M, Coleman MJ, Lewandowski KE, Holt DJ, Keshavan M, Bouix S, Öngür D, Breier A, Shenton ME, O’Donnell LJ. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Molecular psychiatry. 2023;28(6):2301–2311.

BACKGROUND: Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography.

METHODS: Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively.

RESULTS: We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions.

CONCLUSIONS: In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.

Vasung L, Xu J, Abaci-Turk E, Zhou C, Holland E, Barth WH, Barnewolt C, Connolly S, Estroff J, Golland P, Feldman HA, Adalsteinsson E, Grant E. Cross-Sectional Observational Study of Typical in utero Fetal Movements Using Machine Learning. Developmental neuroscience. 2023;45(3):105–114.

Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.

Wang CJ, Rost NS, Golland P. Spatial-Intensity Transforms for Medical Image-to-Image Translation. IEEE transactions on medical imaging. 2023;42(11):3362–3373.

Image-to-image translation has seen major advances in computer vision but can be difficult to apply to medical images, where imaging artifacts and data scarcity degrade the performance of conditional generative adversarial networks. We develop the spatial-intensity transform (SIT) to improve output image quality while closely matching the target domain. SIT constrains the generator to a smooth spatial transform (diffeomorphism) composed with sparse intensity changes. SIT is a lightweight, modular network component that is effective on various architectures and training schemes. Relative to unconstrained baselines, this technique significantly improves image fidelity, and our models generalize robustly to different scanners. Additionally, SIT provides a disentangled view of anatomical and textural changes for each translation, making it easier to interpret the model's predictions in terms of physiological phenomena. We demonstrate SIT on two tasks: predicting longitudinal brain MRIs in patients with various stages of neurodegeneration, and visualizing changes with age and stroke severity in clinical brain scans of stroke patients. On the first task, our model accurately forecasts brain aging trajectories without supervised training on paired scans. On the second task, it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. As conditional generative models become increasingly versatile tools for visualization and forecasting, our approach demonstrates a simple and powerful technique for improving robustness, which is critical for translation to clinical settings. Source code is available at github.com/clintonjwang/spatial-intensity-transforms.

Juvekar P, Dorent R, Kögl F, Torio E, Barr C, Rigolo L, Galvin C, Jowkar N, Kazi A, Haouchine N, Cheema H, Navab N, Pieper S, Wells WM, Bi WL, Golby A, Frisken S, Kapur T. ReMIND: The Brain Resection Multimodal Imaging Database. medRxiv : the preprint server for health sciences. 2023;.

The standard of care for brain tumors is maximal safe surgical resection as the first step. Neuronavigation augments the surgeon's ability to achieve this but loses validity due to brain shift as surgery progresses. Moreover, many gliomas are difficult to distinguish from adjacent healthy brain tissue. Intraoperative MRI (iMRI) is a useful surgical adjunct that can be used to visualize the residual tumor and brain shift. Intraoperative ultrasound (iUS) serves a similar purpose, while also being faster and easier to incorporate into the workflow. However, it provides lower contrast between tumor tissue and normal brain tissue as compared to intraoperative MRI. With the success of data-hungry Artificial Intelligence (AI)/Machine Learning (ML) algorithms in advancing the state of the art in medical image analysis, the benefits of sharing well-curated data can not be overstated. To this end, we provide here the largest publicly-available MRI and intraoperative ultrasound imaging database of surgically treated brain tumors, including gliomas (n=92), metastases (n=11), and others (n=11). This collection contains 369 preoperative MRI series, 320 3D intraoperative ultrasound series, 301 intraoperative MRI series, and 356 segmentations collected from 114 consecutive patients at a single institution. We expect this data to be a resource for computational research in brain shift and image analysis as well as for neurosurgical training in the interpretation of intraoperative ultrasound and iMRI.

He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O’Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Human brain mapping. 2023;44(17):6055–6073.

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.

Zanao TA, Seitz-Holland J, O’Donnell LJ, Zhang F, Rathi Y, Lopes TM, Pimentel-Silva LR, Yassuda CL, Makris N, Shenton ME, Bouix S, Lyall AE, Cendes F. Exploring the impact of hippocampal sclerosis on white matter tracts and memory in individuals with mesial temporal lobe epilepsy. Epilepsia open. 2023;8(3):1111–1122.

OBJECTIVE: To investigate how the presence/side of hippocampal sclerosis (HS) are related to the white matter structure of cingulum bundle (CB), arcuate fasciculus (AF), and inferior longitudinal fasciculus (ILF) in mesial temporal lobe epilepsy (MTLE).

METHODS: We acquired diffusion-weighted magnetic resonance imaging (MRI) from 86 healthy and 71 individuals with MTLE (22 righ-HS; right-HS, 34 left-HS; left-HS, and 15 nonlesional MTLE). We utilized two-tensor tractography and fiber clustering to compare fractional anisotropy (FA) of each side/tract between groups. Additionally, we examined the association between FA and nonverbal (WMS-R) and verbal (WMS-R, RAVLT codification) memory performance for MTLE individuals.

RESULTS: White matter abnormalities depended on the side and presence of HS. The left-HS demonstrated widespread abnormalities for all tracts, the right-HS showed lower FA for ipsilateral tracts and the nonlesional MTLE group did not differ from healthy individuals. Results indicate no differences in verbal/nonverbal memory performance between the groups, but trend-level associations between higher FA of visual memory and the left CB (r = 0.286, P = 0.018), verbal memory (RAVLT) and -left CB (r = 0.335, P = 0.005), -right CB (r = 0.286, P = 0.016), and -left AF (r = 0.287, P = 0.017).

SIGNIFICANCE: Our results highlight that the presence and side of HS are crucial to understand the pathophysiology of MTLE. Specifically, left-sided HS seems to be related to widespread bilateral white matter abnormalities. Future longitudinal studies should focus on developing diagnostic and treatment strategies dependent on HS's presence/side.

Costello H, Schrag AE, Howard R, Roiser JP. Dissociable effects of dopaminergic medications on depression symptom dimensions in Parkinson’s disease. medRxiv : the preprint server for health sciences. 2023;.

BACKGROUND: Depression in Parkinson's disease (PD) is common, disabling and responds poorly to standard antidepressant medication. Motivational symptoms of depression, such as apathy and anhedonia, are particularly prevalent in depression in PD and predict poor response to antidepressant treatment. Loss of dopaminergic innervation of the striatum is associated with emergence of motivational symptoms in PD, and mood fluctuations correlate with dopamine availability. Accordingly, optimising dopaminergic treatment for PD can improve depressive symptoms, and dopamine agonists have shown promising effects in improving apathy. However, the differential effect of antiparkinsonian medication on symptom dimensions of depression is not known.

AIMS: We hypothesised that there would be dissociable effects of dopaminergic medications on different depression symptom dimensions. We predicted that dopaminergic medication would specifically improve motivational symptoms, but not other symptoms, of depression. We also hypothesised that antidepressant effects of dopaminergic medications with mechanisms of action reliant on pre-synaptic dopamine neuron integrity would attenuate as pre-synaptic dopaminergic neurodegeneration progresses.

METHODS: We analysed data from a longitudinal study of 412 newly diagnosed PD patients followed over five years in the Parkinson's Progression Markers Initiative cohort. Medication state for individual classes of Parkinson's medications was recorded annually. Previously validated "motivation" and "depression" dimensions were derived from the 15-item geriatric depression scale. Dopaminergic neurodegeneration was measured using repeated striatal dopamine transporter (DAT) imaging.

RESULTS: Linear mixed-effects modelling was performed across all simultaneously acquired data points. Dopamine agonist use was associated with relatively fewer motivation symptoms as time progressed (interaction: β=-0.07, 95%CI [-0.13,-0.01], p=0.015) but had no effect on the depression symptom dimension (p=0.6). In contrast, monoamine oxidase-B (MAO-B) inhibitor use was associated with relatively fewer depression symptoms across all years (β=-0.41, 95%CI [-0.81,-0.01], p=0.047). No associations were observed between either depression or motivation symptoms and levodopa or amantadine use. There was a significant interaction between striatal DAT binding and MAO-B inhibitor use on motivation symptoms: MAO-B inhibitor use was associated with lower motivation symptoms in patients with higher striatal DAT binding (interaction: β=-0.24, 95%CI [-0.43,-0.05], p=0.012). No other medication effects were moderated by striatal DAT binding measures.

CONCLUSIONS: We identified dissociable associations between dopaminergic medications and different dimensions of depression in PD. Dopamine agonists may be effective for treatment of motivational symptoms of depression. In contrast, MAO-B inhibitors may improve both depressive and motivation symptoms, albeit the latter effect appears to be attenuated in patients with more severe striatal dopaminergic neurodegeneration, which may be a consequence of dependence on pre-synaptic dopaminergic neuron integrity.

Hoffmann M, Singh NM, Dalca A V, Fischl B, Frost R. Can we predict motion artifacts in clinical MRI before the scan completes?. Proceedings of the International Society for Magnetic Resonance in Medicine . Scientific Meeting and Exhibition. International Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhibition. 2023;2023.

Subject motion can cause artifacts in clinical MRI, frequently necessitating repeat scans. We propose to alleviate this inefficiency by predicting artifact scores from partial multi-shot multi-slice acquisitions, which may guide the operator in aborting corrupted scans early.

Nejatbakhsh A, Dey N, Venkatachalam V, Yemini E, Paninski L, Varol E. Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks. Information processing in medical imaging : proceedings of the . conference. 2023;13939:332–343.

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

Bumm R, Zaffino P, Lasso A, Estepar RSJ, Pieper S, Wasserthal J, Spadea MF, Latshang T, Kawel-Böhm N, Wäckerlin A, Werner R, Hässig G, Furrer M, Kikinis R. From Voxels to Prognosis: AI-Driven Quantitative Chest CT Analysis Forecasts ICU Requirements in 78 COVID-19 Cases. Research square. 2023;.

BACKGROUND: The aim of the current study was to investigate the distribution and extent of lung involvement in patients with COVID-19 with AI-supported, automated computer analysis and to assess the relationship between lung involvement and the need for intensive care unit (ICU) admission. A secondary aim was to compare the performance of computer analysis with the judgment of radiological experts.

METHODS: A total of 81 patients from an open-source COVID database with confirmed COVID-19 infection were included in the study. Three patients were excluded. Lung involvement was assessed in 78 patients using computed tomography (CT) scans, and the extent of infiltration and collapse was quantified across various lung lobes and regions. The associations between lung involvement and ICU admission were analyzed. Additionally, the computer analysis of COVID-19 involvement was compared against a human rating provided by radiological experts.

RESULTS: The results showed a higher degree of infiltration and collapse in the lower lobes compared to the upper lobes (p < 0.05) No significant difference was detected in the COVID-19-related involvement of the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the right lower lobes (p < 0.05). When examining the regions, significantly more COVID-19 involvement was found when comparing the posterior vs. the anterior halves of the lungs and the lower vs. the upper half of the lungs. Patients, who required ICU admission during their treatment exhibited significantly higher COVID-19 involvement in their lung parenchyma according to computer analysis, compared to patients who remained in general wards. Patients with more than 40% COVID-19 involvement were almost exclusively treated in intensive care. A high correlation was observed between computer detection of COVID-19 affections and expert rating by radiological experts.

CONCLUSION: The findings suggest that the extent of lung involvement, particularly in the lower lobes, dorsal lungs, and lower half of the lungs, may be associated with the need for ICU admission in patients with COVID-19. Computer analysis showed a high correlation with expert rating, highlighting its potential utility in clinical settings for assessing lung involvement. This information may help guide clinical decision-making and resource allocation during ongoing or future pandemics. Further studies with larger sample sizes are warranted to validate these findings.