Publications by Year: 2019

2019

Shusharina N, Fullerton B, Adams JA, Sharp GC, Chan AW. Impact of aeration change and beam arrangement on the robustness of proton plans. J Appl Clin Med Phys. 2019;20(3):14–21.
This study determines the impact of change in aeration in sinonasal cavities on the robustness of passive-scattering proton therapy plans in patients with sinonasal and nasopharyngeal malignancies. Fourteen patients, each with one planning CT and one CT acquired during radiotherapy were studied. Repeat and planning CTs were rigidly aligned and contours were transferred using deformable registration. The amount of air, tumor, and fluid within the cavity containing the tumor were measured on both CTs. The original plans were recalculated on the repeat CT. Dosimetric changes were measured for the targets and critical structures. Median decrease in gross tumor volume (GTV) was 19.8% and correlated with the time of rescan. The median change in air content was 7.1% and correlated with the tumor shrinkage. The median of the mean dose D change was +0.4% for GTV and +0.3% for clinical target volume. Median change in the maximum dose D of the critical structures were as follows: optic chiasm +0.66%, left optic nerve +0.12%, right optic nerve +0.38%, brainstem +0.6%. The dose to the GTV decreased by more than 5% in 1 case, and the dose to critical structure(s) increased by more than 5% in three cases. These four patients had sinonasal cancers and were treated with anterior proton fields that directly transversed through the involved sinus cavities. The change in dose in the replanning was strongly correlated with the change in aeration (P = 0.02). We found that the change in aeration in the vicinity of the target and the arrangement of proton beams affected the robustness of proton plan.
Gilbert TM, Zürcher NR, Catanese MC, Tseng CEJ, Di Biase MA, Lyall AE, Hightower BG, Parmar AJ, Bhanot A, Wu CJ, Hibert ML, Kim M, Mahmood U, Stufflebeam SM, Schroeder FA, Wang C, Roffman JL, Holt DJ, Greve DN, Pasternak O, Kubicki M, Wey HY, Hooker JM. Neuroepigenetic Signatures of Age and Sex in the Living Human Brain. Nat Commun. 2019;10(1):2945.
Age- and sex-related alterations in gene transcription have been demonstrated, however the underlying mechanisms are unresolved. Neuroepigenetic pathways regulate gene transcription in the brain. Here, we measure in vivo expression of the epigenetic enzymes, histone deacetylases (HDACs), across healthy human aging and between sexes using [C]Martinostat positron emission tomography (PET) neuroimaging (n = 41). Relative HDAC expression increases with age in cerebral white matter, and correlates with age-associated disruptions in white matter microstructure. A post mortem study confirmed that HDAC1 and HDAC2 paralogs are elevated in white matter tissue from elderly donors. There are also sex-specific in vivo HDAC expression differences in brain regions associated with emotion and memory, including the amygdala and hippocampus. Hippocampus and white matter HDAC expression negatively correlates with emotion regulation skills (n = 23). Age and sex are associated with HDAC expression in vivo, which could drive age- and sex-related transcriptional changes and impact human behavior.
Nery F, Szczepankiewicz F, Kerkelä L, Hall MG, Kaden E, Gordon I, Thomas DL, Clark CA. In vivo Demonstration of Microscopic Anisotropy in the Human Kidney using Multidimensional Diffusion MRI. Magn Reson Med. 2019;82(6):2160–8.
PURPOSE: To demonstrate the feasibility of multidimensional diffusion MRI to probe and quantify microscopic fractional anisotropy (µFA) in human kidneys in vivo. METHODS: Linear tensor encoded (LTE) and spherical tensor encoded (STE) renal diffusion MRI scans were performed in 10 healthy volunteers. Respiratory triggering and image registration were used to minimize motion artefacts during the acquisition. Kidney cortex-medulla were semi-automatically segmented based on fractional anisotropy (FA) values. A model-free analysis of LTE and STE signal dependence on b-value in the renal cortex and medulla was performed. Subsequently, µFA was estimated using a single-shell approach. Finally, a comparison of conventional FA and µFA is shown. RESULTS: The hallmark effect of µFA (divergence of LTE and STE signal with increasing b-value) was observed in all subjects. A statistically significant difference between LTE and STE signal was found in the cortex and medulla, starting from b = 750 s/mm and b = 500 s/mm , respectively. This difference was maximal at the highest b-value sampled (b = 1000 s/mm ) which suggests that relatively high b-values are required for µFA mapping in the kidney compared to conventional FA. Cortical and medullary µFA were, respectively, 0.53 ± 0.09 and 0.65 ± 0.05, both respectively higher than conventional FA (0.19 ± 0.02 and 0.40 ± 0.02). CONCLUSION: The feasibility of combining LTE and STE diffusion MRI to probe and quantify µFA in human kidneys is demonstrated for the first time. By doing so, we show that novel microstructure information-not accessible by conventional diffusion encoding-can be probed by multidimensional diffusion MRI. We also identify relevant technical limitations that warrant further development of the technique for body MRI.
Canalini L, Klein J, Miller D, Kikinis R. Segmentation-based Registration of Ultrasound Volumes for Glioma Resection in Image-guided Neurosurgery. Int J Comput Assist Radiol Surg. 2019;14(10):1697–1713.
PURPOSE: In image-guided surgery for glioma removal, neurosurgeons usually plan the resection on images acquired before surgery and use them for guidance during the subsequent intervention. However, after the surgical procedure has begun, the preplanning images become unreliable due to the brain shift phenomenon, caused by modifications of anatomical structures and imprecisions in the neuronavigation system. To obtain an updated view of the resection cavity, a solution is to collect intraoperative data, which can be additionally acquired at different stages of the procedure in order to provide a better understanding of the resection. A spatial mapping between structures identified in subsequent acquisitions would be beneficial. We propose here a fully automated segmentation-based registration method to register ultrasound (US) volumes acquired at multiple stages of neurosurgery. METHODS: We chose to segment sulci and falx cerebri in US volumes, which remain visible during resection. To automatically segment these elements, first we trained a convolutional neural network on manually annotated structures in volumes acquired before the opening of the dura mater and then we applied it to segment corresponding structures in different surgical phases. Finally, the obtained masks are used to register US volumes acquired at multiple resection stages. RESULTS: Our method reduces the mean target registration error (mTRE) between volumes acquired before the opening of the dura mater and during resection from 3.49 mm (± 1.55 mm) to 1.36 mm (± 0.61 mm). Moreover, the mTRE between volumes acquired before opening the dura mater and at the end of the resection is reduced from 3.54 mm (± 1.75 mm) to 2.05 mm (± 1.12 mm). CONCLUSION: The segmented structures demonstrated to be good candidates to register US volumes acquired at different neurosurgical phases. Therefore, our solution can compensate brain shift in neurosurgical procedures involving intraoperative US data.
Zaffino P, Pernelle G, Mastmeyer A, Mehrtash A, Zhang H, Kikinis R, Kapur T, Spadea MF. Fully Automatic Catheter Segmentation in MRI with 3D Convolutional Neural Networks: Application to MRI-guided Gynecologic Brachytherapy. Phys Med Biol. 2019;64(16):165008.
External-beam radiotherapy followed by high dose rate (HDR) brachytherapy is the standard-of-care for treating gynecologic cancers. The enhanced soft-tissue contrast provided by magnetic resonance imaging (MRI) makes it a valuable imaging modality for diagnosing and treating these cancers. However, in contrast to computed tomography (CT) imaging, the appearance of the brachytherapy catheters, through which radiation sources are inserted to reach the cancerous tissue later on, is often variable across images. This paper reports, for the first time, a new deep-learning-based method for fully automatic segmentation of multiple closely spaced brachytherapy catheters in intraoperative MRI. Represented in the data are 50 gynecologic cancer patients treated by MRI-guided HDR brachytherapy. For each patient, a single intraoperative MRI was used. 826 catheters in the images were manually segmented by an expert radiation physicist who is also a trained radiation oncologist. The number of catheters in a patient ranged between 10 and 35. A deep 3D convolutional neural network (CNN) model was developed and trained. In order to make the learning process more robust, the network was trained 5 times, each time using a different combination of shown patients. Finally, each test case was processed by the five networks and the final segmentation was generated by voting on the obtained five candidate segmentations. 4-fold validation was executed and all the patients were segmented. An average distance error of 2.0 ± 3.4 mm was achieved. False positive and false negative catheters were 6.7% and 1.5% respectively. Average Dice score was equal to 0.60 ± 0.17. The algorithm is available for use in the open source software platform 3D Slicer allowing for wide scale testing and research discussion. In conclusion, to the best of our knowledge, fully automatic segmentation of multiple closely spaced catheters from intraoperative MR images was achieved for the first time in gynecological brachytherapy.
Miller K, Joldes GR, Bourantas G, Warfield SK, Hyde DE, Kikinis R, Wittek A. Biomechanical Modeling and Computer Simulation of the Brain during Neurosurgery. Int J Numer Method Biomed Eng. 2019;35(10):e3250.
Computational biomechanics of the brain for neurosurgery is an emerging area of research recently gaining in importance and practical applications. This review paper presents the contributions of the Intelligent Systems for Medicine Laboratory and its collaborators to this field, discussing the modeling approaches adopted and the methods developed for obtaining the numerical solutions. We adopt a physics-based modeling approach and describe the brain deformation in mechanical terms (such as displacements, strains, and stresses), which can be computed using a biomechanical model, by solving a continuum mechanics problem. We present our modeling approaches related to geometry creation, boundary conditions, loading, and material properties. From the point of view of solution methods, we advocate the use of fully nonlinear modeling approaches, capable of capturing very large deformations and nonlinear material behavior. We discuss finite element and meshless domain discretization, the use of the total Lagrangian formulation of continuum mechanics, and explicit time integration for solving both time-accurate and steady-state problems. We present the methods developed for handling contacts and for warping 3D medical images using the results of our simulations. We present two examples to showcase these methods: brain shift estimation for image registration and brain deformation computation for neuronavigation in epilepsy treatment.
Lemaire JJ, De Salles A, Coll G, Ouadih YE, Chaix R, Coste J, Durif F, Makris N, Kikinis R. MRI Atlas of the Human Deep Brain. Front Neurol. 2019;10:851.
Mastering detailed anatomy of the human deep brain in clinical neurosciences is challenging. Although numerous pioneering works have gathered a large dataset of structural and topographic information, it is still difficult to transfer this knowledge into practice, even with advanced magnetic resonance imaging techniques. Thus, classical histological atlases continue to be used to identify structures for stereotactic targeting in functional neurosurgery. Physicians mainly use these atlases as a template co-registered with the patient’s brain. However, it is possible to directly identify stereotactic targets on MRI scans, enabling personalized targeting. In order to help clinicians directly identify deep brain structures relevant to present and future medical applications, we built a volumetric MRI atlas of the deep brain (MDBA) on a large scale (infra millimetric). Twelve hypothalamic, 39 subthalamic, 36 telencephalic, and 32 thalamic structures were identified, contoured, and labeled. Nineteen coronal, 18 axial, and 15 sagittal MRI plates were created. Although primarily designed for direct labeling, the anatomic space was also subdivided in twelfths of AC-PC distance, leading to proportional scaling in the coronal, axial, and sagittal planes. This extensive work is now available to clinicians and neuroscientists, offering another representation of the human deep brain ([https://hal.archives-ouvertes.fr/] [hal-02116633]). The atlas may also be used by computer scientists who are interested in deciphering the topography of this complex region.
Farooq H, Chen Y, Georgiou TT, Tannenbaum A, Lenglet C. Network Curvature as a Hallmark of Brain Structural Connectivity. Nat Commun. 2019;10(1):4937.
Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.
Kocev B, Hahn HK, Linsen L, Wells WM, Kikinis R. Uncertainty-aware asynchronous scattered motion interpolation using Gaussian process regression. Comput Med Imaging Graph. 2019;72:1–12.
We address the problem of interpolating randomly non-uniformly spatiotemporally scattered uncertain motion measurements, which arises in the context of soft tissue motion estimation. Soft tissue motion estimation is of great interest in the field of image-guided soft-tissue intervention and surgery navigation, because it enables the registration of pre-interventional/pre-operative navigation information on deformable soft-tissue organs. To formally define the measurements as spatiotemporally scattered motion signal samples, we propose a novel motion field representation. To perform the interpolation of the motion measurements in an uncertainty-aware optimal unbiased fashion, we devise a novel Gaussian process (GP) regression model with a non-constant-mean prior and an anisotropic covariance function and show through an extensive evaluation that it outperforms the state-of-the-art GP models that have been deployed previously for similar tasks. The employment of GP regression enables the quantification of uncertainty in the interpolation result, which would allow the amount of uncertainty present in the registered navigation information governing the decisions of the surgeon or intervention specialist to be conveyed.
Peled S, Vangel M, Kikinis R, Tempany CM, Fennessy FM, Fedorov A. Selection of Fitting Model and Arterial Input Function for Repeatability in Dynamic Contrast-Enhanced Prostate MRI. Acad Radiol. 2019;26(9):e241-e251.
RATIONALE AND OBJECTIVES: Analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging is notable for the variability of calculated parameters. The purpose of this study was to evaluate the level of measurement variability and error/variability due to modeling in DCE magnetic resonance imaging parameters. MATERIALS AND METHODS: Two prostate DCE scans were performed on 11 treatment-na ıve patients with suspected or confirmed prostate peripheral zone cancer within an interval of less than two weeks. Tumor-suspicious and normal-appearing regions of interest (ROI) in the prostate peripheral zone were segmented. Different Tofts-Kety based models and different arterial input functions, with and without bolus arrival time (BAT) correction, were used to extract pharmacokinetic parameters. The percent repeatability coefficient (%RC) of fitted model parameters K, v, and k was calculated. Paired t-tests comparing parameters in tumor-suspicious ROIs and in normal-appearing tissue evaluated each parameter’s sensitivity to pathology. RESULTS: Although goodness-of-fit criteria favored the four-parameter extended Tofts-Kety model with the BAT correction included, the simplest two-parameter Tofts-Kety model overall yielded the best repeatability scores. The best %RC in the tumor-suspicious ROI was 63% for k, 28% for v and 83% for K . The best p values for discrimination between tissues were p <10 for k and K, and p = 0.11 for v. Addition of the BAT correction to the models did not improve repeatability. CONCLUSION: The parameter k, using an arterial input functions directly measured from blood signals, was more repeatable than K. Both K and k values were highly discriminatory between healthy and diseased tissues in all cases. The parameter v had high repeatability but could not distinguish the two tissue types.