Publications by Year: 2013

2013

Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin CF. Combining Surface and Fiber Geometry: An Integrated Approach to Brain Morphology. Med Image Comput Comput Assist Interv. 2013;16(Pt 1):50–7.

Despite the fact that several theories link cortical development and function to the development of white matter and its geometrical structure, the relationship between gray and white matter morphology has not been widely researched. In this paper, we propose a novel framework for investigating this relationship. Given a set of fiber tracts which connect to a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. The distributions of these scalar values are then linked via Mutual Information, which results in a quantitative marker that can be used in the study of normal and pathological brain structure and development. We apply this framework to a population study on autism spectrum disorder in children.

Vosburgh KG, Golby A, Pieper SD. Surgery, Virtual Reality, and the Future. Stud Health Technol Inform. 2013;184:7–13.

MMVR has provided the leading forum for the multidisciplinary interaction and development of the use of Virtual Reality (VR) techniques in medicine, particularly in surgical practice. Here we look back at the foundations of our field, focusing on the use of VR in Surgery and similar interventional procedures, sum up the current status, and describe the challenges and opportunities going forward.

Donnell LJO, Golby AJ, Westin CF. Fiber Clustering versus the Parcellation-based Connectome. Neuroimage. 2013;80:283–9.

We compare two strategies for modeling the connections of the brain’s white matter: fiber clustering and the parcellation-based connectome. Both methods analyze diffusion magnetic resonance imaging fiber tractography to produce a quantitative description of the brain’s connections. Fiber clustering is designed to reconstruct anatomically-defined white matter tracts, while the parcellation-based white matter segmentation enables the study of the brain as a network. From the perspective of white matter segmentation, we compare and contrast the goals and methods of the parcellation-based and clustering approaches, with special focus on reviewing the field of fiber clustering. We also propose a third category of new hybrid methods that combine the aspects of parcellation and clustering, for joint analysis of connection structure and anatomy or function. We conclude that these different approaches for segmentation and modeling of the white matter can advance the neuroscientific study of the brain’s connectivity in complementary ways.

Zhou B, Konstorum A, Duong T, Tieu KH, Wells WM III, Brown GG, Stern HS, Shahbaba B. A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-site Experimental fMRI Study. Psychometrika. 2013;78(2):260–78.

We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model selection based on the deviance information criterion (DIC), we show that our model provides a good fit to the observed data by sharing information across the sites. We also propose a simple approach for evaluating the efficacy of the multi-site experiment by comparing the results to those that would be expected in hypothetical single-site experiments with the same sample size.

Egger J, Kapur T, Fedorov A, Pieper S, Miller J V, Veeraraghavan H, Freisleben B, Golby AJ, Nimsky C, Kikinis R. GBM Volumetry using the 3D Slicer Medical Image Computing Platform. Sci Rep. 2013;3:1364.

Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer - a free platform for biomedical research - provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm.

Chen GH, Wachinger C, Golland P. Sparse Projections of Medical Images onto Manifolds. Inf Process Med Imaging. 2013;23:292–303.

Manifold learning has been successfully applied to a variety of medical imaging problems. Its use in real-time applications requires fast projection onto the low-dimensional space. To this end, out-of-sample extensions are applied by constructing an interpolation function that maps from the input space to the low-dimensional manifold. Commonly used approaches such as the Nyström extension and kernel ridge regression require using all training points. We propose an interpolation function that only depends on a small subset of the input training data. Consequently, in the testing phase each new point only needs to be compared against a small number of input training data in order to project the point onto the low-dimensional space. We interpret our method as an out-of-sample extension that approximates kernel ridge regression. Our method involves solving a simple convex optimization problem and has the attractive property of guaranteeing an upper bound on the approximation error, which is crucial for medical applications. Tuning this error bound controls the sparsity of the resulting interpolation function. We illustrate our method in two clinical applications that require fast mapping of input images onto a low-dimensional space.

Risholm P, Janoos F, Norton I, Golby AJ, Wells WM III. Bayesian Characterization of Uncertainty in Intra-subject Non-rigid Registration. Med Image Anal. 2013;17(5):538–55.

In settings where high-level inferences are made based on registered image data, the registration uncertainty can contain important information. In this article, we propose a Bayesian non-rigid registration framework where conventional dissimilarity and regularization energies can be included in the likelihood and the prior distribution on deformations respectively through the use of Boltzmann’s distribution. The posterior distribution is characterized using Markov Chain Monte Carlo (MCMC) methods with the effect of the Boltzmann temperature hyper-parameters marginalized under broad uninformative hyper-prior distributions. The MCMC chain permits estimation of the most likely deformation as well as the associated uncertainty. On synthetic examples, we demonstrate the ability of the method to identify the maximum a posteriori estimate and the associated posterior uncertainty, and demonstrate that the posterior distribution can be non-Gaussian. Additionally, results from registering clinical data acquired during neurosurgery for resection of brain tumor are provided; we compare the method to single transformation results from a deterministic optimizer and introduce methods that summarize the high-dimensional uncertainty. At the site of resection, the registration uncertainty increases and the marginal distribution on deformations is shown to be multi-modal.

Batmanghelich NK, Dalca A V, Sabuncu MR, Polina G, . Joint Modeling of Imaging and Genetics. Inf Process Med Imaging. 2013;23:766–77.

We propose a unified Bayesian framework for detecting genetic variants associated with a disease while exploiting image-based features as an intermediate phenotype. Traditionally, imaging genetics methods comprise two separate steps. First, image features are selected based on their relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the selected features. In contrast, our method performs these tasks simultaneously to ultimately assign probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient approximate inference algorithm that handles high dimensionality of imaging genetic data. We evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also illustrate the application of the method on ADNI data.

Tunç B, Smith AR, Wasserman D, Pennec X, Wells WM III, Verma R, Pohl KM. Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering. Inf Process Med Imaging. 2013;23:730–41.

The clustering of fibers into bundles is an important task in studying the structure and function of white matter. Existing technology mostly relies on geometrical features, such as the shape of fibers, and thus only provides very limited information about the neuroanatomical function of the brain. We advance this issue by proposing a multinomial representation of fibers decoding their connectivity to gray matter regions. We then simplify the clustering task by first deriving a compact encoding of our representation via the logit transformation. Furthermore, we define a distance between fibers that is in theory invariant to parcellation biases and is equivalent to a family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber bundles without needing to register the corresponding scans to a common coordinate system. We confirm these qualitative findings via a simple statistical analyse of the fiber bundles.

Sridharan R, Dalca A V, Fitzpatrick KM, Cloonan L, Kanakis A, Wu O, Furie KL, Rosand J, Rost NS, Golland P. Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke. Multimodal Brain Image Anal (2013). 2013;8159:18–30.

We present an analysis framework for large studies of multimodal clinical quality brain image collections. Processing and analysis of such datasets is challenging due to low resolution, poor contrast, mis-aligned images, and restricted field of view. We adapt existing registration and segmentation methods and build a computational pipeline for spatial normalization and feature extraction. The resulting aligned dataset enables clinically meaningful analysis of spatial distributions of relevant anatomical features and of their evolution with age and disease progression. We demonstrate the approach on a neuroimaging study of stroke with more than 800 patients. We show that by combining data from several modalities, we can automatically segment important biomarkers such as white matter hyperintensity and characterize pathology evolution in this heterogeneous cohort. Specifically, we examine two sub-populations with different dynamics of white matter hyperintensity changes as a function of patients’ age. Pipeline and analysis code is available at http://groups.csail.mit.edu/vision/medical-vision/stroke/.