Publications by Year: 2012

O'Donnell LJ, Wells WM, Golby AJ, Westin C-F. Unbiased groupwise registration of white matter tractography. Med Image Comput Comput Assist Interv. 2012;15 (Pt 3) :123-30.Abstract
We present what we believe to be the first investigation into unbiased multi-subject registration of whole brain diffusion tractography of the white matter. To our knowledge, this is also the first entropy-based objective function applied to fiber tract registration. To define the probability of fiber trajectories for the computation of entropy, we take advantage of a pairwise fiber distance used as the basis for a Gaussian-like kernel. By employing several values of the kernel's scale parameter, the method is inherently multi-scale. Results of experiments using synthetic and real datasets demonstrate the potential of the method for simultaneous joint registration of tractography.
Gholami B, Bailey JM, Haddad WM, Tannenbaum AR. Clinical Decision Support and Closed-Loop Control for Cardiopulmonary Management and Intensive Care Unit Sedation Using Expert Systems. IEEE Trans Control Syst Technol. 2012;20 (5) :1343-1350.Abstract
Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While physicians select the agent(s) used for sedation and cardiovascular function, the actual administration of these agents is the responsibility of the nursing staff. If clinical decision support systems and closed-loop control systems could be developed for critical care monitoring and lifesaving interventions as well as the administration of sedation and cardiopulmonary management, the ICU nurse could be released from the intense monitoring of sedation, allowing her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend the deterministic rule-based expert system for cardiopulmonary management and ICU sedation framework presented in [1] to a stochastic setting by using probability theory to quantify uncertainty and hence deal with more realistic clinical situations.
Fedorov A, Tuncali K, Fennessy FM, Tokuda J, Hata N, Wells WM, Kikinis R, Tempany CM. Image Registration for Targeted MRI-guided Transperineal Prostate Biopsy. J Magn Reson Imaging. 2012;36 (4) :987-92.Abstract

PURPOSE: To develop and evaluate image registration methodology for automated re-identification of tumor-suspicious foci from preprocedural MR exams during MR-guided transperineal prostate core biopsy. MATERIALS AND METHODS: A hierarchical approach for automated registration between planning and intra-procedural T2-weighted prostate MRI was developed and evaluated on the images acquired during 10 consecutive MR-guided biopsies. Registration accuracy was quantified at image-based landmarks and by evaluating spatial overlap for the manually segmented prostate and sub-structures. Registration reliability was evaluated by simulating initial mis-registration and analyzing the convergence behavior. Registration precision was characterized at the planned biopsy targets. RESULTS: The total computation time was compatible with a clinical setting, being at most 2 min. Deformable registration led to a significant improvement in spatial overlap of the prostate and peripheral zone contours compared with both rigid and affine registration. Average in-slice landmark registration error was 1.3 ± 0.5 mm. Experiments simulating initial mis-registration resulted in an estimated average capture range of 6 mm and an average in-slice registration precision of ±0.3 mm. CONCLUSION: Our registration approach requires minimum user interaction and is compatible with the time constraints of our interventional clinical workflow. The initial evaluation shows acceptable accuracy, reliability and consistency of the method.