Publications by Year: 2010

2010

Agar NYR, Malcolm JG, Mohan V, Yang HW, Johnson MD, Tannenbaum A, Agar JN, Black PM. Imaging of meningioma progression by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Chem. 2010;82(7):2621–5.
Often considered benign, meningiomas represent 32% of intracranial tumors with three grades of malignancy defined by the World Health Organization (WHO) histology based classification. Malignant meningiomas are associated with less than 2 years median survival. The inability to predict recurrence and progression of meningiomas induces significant anxiety for patients and limits physicians in implementing prophylactic treatment approaches. This report presents an analytical approach to tissue characterization based on matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry imaging (MSI) which is introduced in an attempt to develop a reference database for predictive classification of brain tumors. This pilot study was designed to evaluate the potential of such an approach and to begin to address limitations of the current methodology. Five recurrent and progressive meningiomas for which surgical specimens were available from the original and progressed grades were selected and tested against nonprogressive high-grade meningiomas, high-grade gliomas, and nontumor brain specimens. The common profiling approach of data acquisition was compared to imaging and revealed significant benefits in spatially resolved acquisition for improved spectral definition. A preliminary classifier based on the support vector machine showed the ability to distinguish meningioma image spectra from the nontumor brain and from gliomas, a different type of brain tumor, and to enable class imaging of surgical tissue. Although the development of classifiers was shown to be sensitive to data preparation parameters such as recalibration and peak picking criteria, it also suggested the potential for maturing into a predictive algorithm if provided with a larger series of well-defined cases.
Lashkari D, Sridharan R, Golland P. Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations. Adv Neural Inf Process Syst. 2010;23:1252–1260.
We present a model that describes the structure in the responses of different brain areas to a set of stimuli in terms of stimulus categories (clusters of stimuli) and functional units (clusters of voxels). We assume that voxels within a unit respond similarly to all stimuli from the same category, and design a nonparametric hierarchical model to capture inter-subject variability among the units. The model explicitly encodes the relationship between brain activations and fMRI time courses. A variational inference algorithm derived based on the model learns categories, units, and a set of unit-category activation probabilities from data. When applied to data from an fMRI study of object recognition, the method finds meaningful and consistent clusterings of stimuli into categories and voxels into units.
Lashkari D, Vul E, Kanwisher N, Golland P. Discovering structure in the space of fMRI selectivity profiles. Neuroimage. 2010;50(3):1085–98.
We present a method for discovering patterns of selectivity in fMRI data for experiments with multiple stimuli/tasks. We introduce a representation of the data as profiles of selectivity using linear regression estimates, and employ mixture model density estimation to identify functional systems with distinct types of selectivity. The method characterizes these systems by their selectivity patterns and spatial maps, both estimated simultaneously via the EM algorithm. We demonstrate a corresponding method for group analysis that avoids the need for spatial correspondence among subjects. Consistency of the selectivity profiles across subjects provides a way to assess the validity of the discovered systems. We validate this model in the context of category selectivity in visual cortex, demonstrating good agreement with the findings based on prior hypothesis-driven methods.
Berlow YA, Wells WM, Ellison JM, Sung YH, Renshaw PF, Harper DG. Neuropsychiatric correlates of white matter hyperintensities in Alzheimer s disease. Int J Geriatr Psychiatry. 2010;25(8):780–8.
OBJECTIVE: To investigate the association of behavioral and psychological symptoms of dementia (BPSD) in Alzheimer’s disease (AD) and magnetic resonance imaging (MRI) measures of brain atrophy and white matter hyperintensities (WMH). METHODS: Thirty-seven patients with probable AD received the Neuropsychiatric Inventory (NPI), the Mini Mental Status Exam (MMSE), and an MRI scan as part of their initial evaluation at the Outpatient Memory Diagnostic Clinic at McLean Hospital. MRI-based volumetric measurements of whole brain atrophy, hippocampal volumes, and WMH were obtained. Analysis of covariance models, using age as a covariate and the presence of specific BPSD as independent variables, were used to test for differences in whole brain volumes, hippocampal volumes and WMH volumes. RESULTS: Increased WMH were associated with symptoms of anxiety, aberrant motor behavior, and night time disturbance, while symptoms of disinhibition were linked to lower WMH volume. No associations were found for whole brain or hippocampal volumes and BPSD. CONCLUSIONS: These findings suggest that white matter changes are associated with the presence of BPSD in AD.
Malcolm JG, Michailovich O, Bouix S, Westin CF, Shenton ME, Rathi Y. A filtered approach to neural tractography using the Watson directional function. Med Image Anal. 2010;14(1):58–69.
We propose a technique to simultaneously estimate the local fiber orientations and perform multi-fiber tractography. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the measured signal or estimated fiber orientation. Further, to overcome noise, many algorithms use a filter as a post-processing step to obtain a smooth trajectory. We formulate fiber tracking as causal estimation: at each step of tracing the fiber, the current estimate of the signal is guided by the previous. To do this, we model the signal as a discrete mixture of Watson directional functions and perform tractography within a filtering framework. Starting from a seed point, each fiber is traced to its termination using an unscented Kalman filter to simultaneously fit the signal and propagate in the most consistent direction. Despite the presence of noise and uncertainty, this provides an accurate estimate of the local structure at each point along the fiber. We choose the Watson function since it provides a compact representation of the signal parameterized by the principal diffusion direction and a scaling parameter describing anisotropy, and also allows analytic reconstruction of the oriented diffusion function from those parameters. Using a mixture of two and three components (corresponding to two-fiber and three-fiber models) we demonstrate in synthetic experiments that this approach reduces signal reconstruction error and significantly improves the angular resolution at crossings and branchings. In vivo experiments examine the corpus callosum and internal capsule and confirm the ability to trace through regions known to contain such crossing and branching while providing inherent path regularization.
Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. Local white matter geometry from diffusion tensor gradients. Neuroimage. 2010;49(4):3175–86.
We introduce a mathematical framework for computing geometrical properties of white matter fibers directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fiber dispersion and (2) fiber curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia.
Toews M, Wells W, Collins L, Arbel T. Feature-based morphometry: discovering group-related anatomical patterns. Neuroimage. 2010;49(3):2318–27.
This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1).
Vaswani N, Rathi Y, Yezzi A, Tannenbaum A. Deform PF-MT: particle filter with mode tracker for tracking nonaffine contour deformations. IEEE Trans Image Process. 2010;19(4):841–57.
We propose algorithms for tracking the boundary contour of a deforming object from an image sequence, when the nonaffine (local) deformation over consecutive frames is large and there is overlapping clutter, occlusions, low contrast, or outlier imagery. When the object is arbitrarily deforming, each, or at least most, contour points can move independently. Contour deformation then forms an infinite (in practice, very large), dimensional space. Direct application of particle filters (PF) for large dimensional problems is impractically expensive. However, in most real problems, at any given time, most of the contour deformation occurs in a small number of dimensions ("effective basis space") while the residual deformation in the rest of the state space ("residual space") is small. This property enables us to apply the particle filtering with mode tracking (PF-MT) idea that was proposed for such large dimensional problems in recent work. Since most contour deformation is low spatial frequency, we propose to use the space of deformation at a subsampled set of locations as the effective basis space. The resulting algorithm is called deform PF-MT. It requires significant modifications compared to the original PF-MT because the space of contours is a non-Euclidean infinite dimensional space.
Voineskos AN, Lobaugh NJ, Bouix S, Rajji TK, Miranda D, Kennedy JL, Mulsant BH, Pollock BG, Shenton ME. Diffusion Tensor Tractography Findings in Schizophrenia across the Adult Lifespan. Brain. 2010;133(Pt 5):1494–504.
In healthy adult individuals, late life is a dynamic time of change with respect to the microstructural integrity of white matter tracts. Yet, elderly individuals are generally excluded from diffusion tensor imaging studies in schizophrenia. Therefore, we examined microstructural integrity of frontotemporal and interhemispheric white matter tracts in schizophrenia across the adult lifespan. Diffusion tensor imaging data from 25 younger schizophrenic patients (< or = 55 years), 25 younger controls, 25 older schizophrenic patients (> or = 56 years) and 25 older controls were analysed. Patients with schizophrenia in each group were individually matched to controls. Whole-brain tractography and clustering segmentation were employed to isolate white matter tracts. Groups were compared using repeated measures analysis of variance with 12 within-group measures of fractional anisotropy: (left and right) uncinate fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, inferior occipito-frontal fasciculus, cingulum bundle, and genu and splenium of the corpus callosum. For each white matter tract, fractional anisotropy was then regressed against age in patients and controls, and correlation coefficients compared. The main effect of group (F(3,92) = 12.2, P < 0.001), and group by tract interactions (F(26,832) = 1.68, P = 0.018) were evident for fractional anisotropy values. Younger patients had significantly lower fractional anisotropy than younger controls (Bonferroni-corrected alpha = 0.0042) in the left uncinate fasciculus (t(48) = 3.7, P = 0.001) and right cingulum bundle (t(48) = 3.6, P = 0.001), with considerable effect size, but the older groups did not differ. Schizophrenic patients did not demonstrate accelerated age-related decline compared with healthy controls in any white matter tract. To our knowledge, this is the first study to examine the microstructural integrity of frontotemporal white matter tracts across the adult lifespan in schizophrenia. The left uncinate fasciculus and right cingulum bundle are disrupted in younger chronic patients with schizophrenia compared with matched controls, suggesting that these white matter tracts are related to frontotemporal disconnectivity. The absence of accelerated age-related decline, or differences between older community-dwelling patients and controls, suggests that these patients may possess resilience to white matter disruption.
Tokuda J, Fischer GS, Dimaio SP, Gobbi DG, Csoma C, Mewes PW, Fichtinger G, Tempany CM, Hata N. Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput Med Imaging Graph. 2010;34(1):3–8.
A software system to provide intuitive navigation for MRI-guided robotic transperineal prostate therapy is presented. In the system, the robot control unit, the MRI scanner, and the open-source navigation software are connected together via Ethernet to exchange commands, coordinates, and images using an open network communication protocol, OpenIGTLink. The system has six states called "workphases" that provide the necessary synchronization of all components during each stage of the clinical workflow, and the user interface guides the operator linearly through these workphases. On top of this framework, the software provides the following features for needle guidance: interactive target planning; 3D image visualization with current needle position; treatment monitoring through real-time MR images of needle trajectories in the prostate. These features are supported by calibration of robot and image coordinates by fiducial-based registration. Performance tests show that the registration error of the system was 2.6mm within the prostate volume. Registered real-time 2D images were displayed 1.97 s after the image location is specified.