Publications by Year: 2009

2009

Wittek A, Hawkins T, Miller K. On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech Model Mechanobiol. 2009;8(1):77–84.
Imaging modalities that can be used intra-operatively do not provide sufficient details to confidently locate the abnormalities and critical healthy areas that have been identified from high-resolution pre-operative scans. However, as we have shown in our previous work, high quality pre-operative images can be warped to the intra-operative position of the brain. This can be achieved by computing deformations within the brain using a biomechanical model. In this paper, using a previously developed patient-specific model of brain undergoing craniotomy-induced shift, we conduct a parametric analysis to investigate in detail the influences of constitutive models of the brain tissue. We conclude that the choice of the brain tissue constitutive model, when used with an appropriate finite deformation solution, does not affect the accuracy of computed displacements, and therefore a simple linear elastic model for the brain tissue is sufficient.
Ou W, Hämäläinen MS, Golland P. A distributed spatio-temporal EEG/MEG inverse solver. Neuroimage. 2009;44(3):932–46.
We propose a novel l(1)l(2)-norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard l(1)-norm inverse solvers, this sparse distributed inverse solver integrates the l(1)-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and "spiky" reconstructed signals often produced by the currently used sparse solvers. The joint spatio-temporal model leads to a cost function with an l(1)l(2)-norm regularizer whose minimization can be reduced to a convex second-order cone programming (SOCP) problem and efficiently solved using the interior-point method. The efficient computation of the SOCP problem allows us to implement permutation tests for estimating statistical significance of the inverse solution. Validation with simulated and human MEG data shows that the proposed solver yields source time course estimates qualitatively similar to those obtained through dipole fitting, but without the need to specify the number of dipole sources in advance. Furthermore, the l(1)l(2)-norm solver achieves fewer false positives and a better representation of the source locations than the conventional l(2) minimum-norm estimates.
Qazi AA, Radmanesh A, Donnell LO, Kindlmann G, Peled S, Whalen S, Westin CF, Golby AJ. Resolving crossings in the corticospinal tract by two-tensor streamline tractography: Method and clinical assessment using fMRI. Neuroimage. 2009;47 Suppl 2:98–106.
An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multidirectional fiber architecture within a voxel. This leads to erroneous fiber tractography results in locations where fiber bundles cross each other. This may lead to the inability to visualize clinically important tracts such as the lateral projections of the corticospinal tract. In this report, we present a deterministic two-tensor eXtended Streamline Tractography (XST) technique, which successfully traces through regions of crossing fibers. We evaluated the method on simulated and in vivo human brain data, comparing the results with the traditional single-tensor and with a probabilistic tractography technique. By tracing the corticospinal tract and correlating with fMRI-determined motor cortex in both healthy subjects and patients with brain tumors, we demonstrate that two-tensor deterministic streamline tractography can accurately identify fiber bundles consistent with anatomy and previously not detected by conventional single-tensor tractography. When compared to the dense connectivity maps generated by probabilistic tractography, the method is computationally efficient and generates discrete geometric pathways that are simple to visualize and clinically useful. Detection of crossing white matter pathways can improve neurosurgical visualization of functionally relevant white matter areas.
Martin-Fernandez M, Muñoz-Moreno E, Cammoun L, Thiran JP, Westin CF, Alberola-López C. Sequential Anisotropic Multichannel Wiener Filtering with Rician Bias Correction Applied to 3D Regularization of DWI Data. Med Image Anal. 2009;13(1):19–35.
It has been shown that the tensor calculation is very sensitive to the presence of noise in the acquired images, yielding to very low quality Diffusion Tensor Images (DTI) data. Recent investigations have shown that the noise present in the Diffusion Weighted Images (DWI) causes bias effects on the DTI data which cannot be corrected if the noise characteristic is not taken into account. One possible solution is to increase the minimum number of acquired measurements (which is 7) to several tens (or even several hundreds). This has the disadvantage of increasing the acquisition time by one (or two) orders of magnitude, making the process inconvenient for a clinical setting. We here proposed a turn-around procedure for which the number of acquisitions is maintained but, the DWI data are filtered prior to determining the DTI. We show a significant reduction on the DTI bias by means of a simple and fast procedure which is based on linear filtering; well-known drawbacks of such filters are circumvented by means of anisotropic neighborhoods and sequential application of the filter itself. Information of the first order probability density function of the raw data, namely, the Rice distribution, is also included. Results are shown both for synthetic and real datasets. Some error measurements are determined in the synthetic experiments, showing how the proposed scheme is able to reduce them. It is worth noting a 50% increase in the linear component for real DTI data, meaning that the bias in the DTI is considerably reduced. A novel fiber smoothness measure is defined to evaluate the resulting tractography for real DWI data. Our findings show that after filtering, fibers are considerably smoother on the average. Execution times are very low as compared to other reported approaches which allows for a real-time implementation.
Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water Elimination and Mapping from Diffusion MRI. Magn Reson Med. 2009;62(3):717–30.
Relating brain tissue properties to diffusion tensor imaging (DTI) is limited when an image voxel contains partial volume of brain tissue with free water, such as cerebrospinal fluid or edema, rendering the DTI indices no longer useful for describing the underlying tissue properties. We propose here a method for separating diffusion properties of brain tissue from surrounding free water while mapping the free water volume. This is achieved by fitting a bi-tensor model for which a mathematical framework is introduced to stabilize the fitting. Applying the method on datasets from a healthy subject and a patient with edema yielded corrected DTI indices and a more complete tract reconstruction that passed next to the ventricles and through the edema. We were able to segment the edema into areas according to the condition of the underlying tissue. In addition, the volume of free water is suggested as a new quantitative contrast of diffusion MRI. The findings suggest that free water is not limited to the borders of the brain parenchyma; it therefore contributes to the architecture surrounding neuronal bundles and may indicate specific anatomical processes. The analysis requires a conventional DTI acquisition and can be easily merged with existing DTI pipelines.