Publications by Year: 2007

2007

Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz FA, Golby A, Black PM, Warfield SK. Non-rigid Alignment of Pre-operative MRI, fMRI, and DT-MRI with Intra-operative MRI for Enhanced Visualization and Navigation in Image-guided Neurosurgery. Neuroimage. 2007;35(2):609–24.
OBJECTIVE: The usefulness of neurosurgical navigation with current visualizations is seriously compromised by brain shift, which inevitably occurs during the course of the operation, significantly degrading the precise alignment between the pre-operative MR data and the intra-operative shape of the brain. Our objectives were (i) to evaluate the feasibility of non-rigid registration that compensates for the brain deformations within the time constraints imposed by neurosurgery, and (ii) to create augmented reality visualizations of critical structural and functional brain regions during neurosurgery using pre-operatively acquired fMRI and DT-MRI. MATERIALS AND METHODS: Eleven consecutive patients with supratentorial gliomas were included in our study. All underwent surgery at our intra-operative MR imaging-guided therapy facility and have tumors in eloquent brain areas (e.g. precentral gyrus and cortico-spinal tract). Functional MRI and DT-MRI, together with MPRAGE and T2w structural MRI were acquired at 3 T prior to surgery. SPGR and T2w images were acquired with a 0.5 T magnet during each procedure. Quantitative assessment of the alignment accuracy was carried out and compared with current state-of-the-art systems based only on rigid registration. RESULTS: Alignment between pre-operative and intra-operative datasets was successfully carried out during surgery for all patients. Overall, the mean residual displacement remaining after non-rigid registration was 1.82 mm. There is a statistically significant improvement in alignment accuracy utilizing our non-rigid registration in comparison to the currently used technology (p<0.001). CONCLUSIONS: We were able to achieve intra-operative rigid and non-rigid registration of (1) pre-operative structural MRI with intra-operative T1w MRI; (2) pre-operative fMRI with intra-operative T1w MRI, and (3) pre-operative DT-MRI with intra-operative T1w MRI. The registration algorithms as implemented were sufficiently robust and rapid to meet the hard real-time constraints of intra-operative surgical decision making. The validation experiments demonstrate that we can accurately compensate for the deformation of the brain and thus can construct an augmented reality visualization to aid the surgeon.
Alayón S, Robertson R, Warfield SK, Ruiz-Alzola J. A fuzzy system for helping medical diagnosis of malformations of cortical development. J Biomed Inform. 2007;40(3):221–35.
Malformations of the cerebral cortex are recognized as a common cause of developmental delay, neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral gray matter and underlying white matter. There is no automated system for aiding the observer in making the diagnosis of a cortical malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available expert knowledge about cortical malformations and assists the medical observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence of the various factors that take part in the decision. The evaluation of the system has been carried out by comparing the automated diagnostic algorithm with known case examples of various malformations due to abnormal cortical organization. An exhaustive evaluation of the system by comparison with published cases and a ROC analysis is presented in the paper.
Melonakos J, Niethammer M, Mohan V, Kubicki M, Miller J V, Tannenbaum A. Locally-Constrained Region-Based Methods for DW-MRI Segmentation. Proc IEEE Int Conf Comput Vis. 2007;:1–8.
In this paper, we describe a method for segmenting fiber bundles from diffusion-weighted magnetic resonance images using a locally-constrained region based approach. From a pre-computed optimal path, the algorithm propagates outward capturing only those voxels which are locally connected to the fiber bundle. Rather than attempting to find large numbers of open curves or single fibers, which individually have questionable meaning, this method segments the full fiber bundle region. The strengths of this approach include its ease-of-use, computational speed, and applicability to a wide range of fiber bundles. In this work, we show results for segmenting the cingulum bundle. Finally, we explain how this approach and extensions thereto overcome a major problem that typical region-based flows experience when attempting to segment neural fiber bundles.
Nestor PG, Onitsuka T, Gurrera RJ, Niznikiewicz M, Frumin M, Shenton ME, McCarley RW. Dissociable contributions of MRI volume reductions of superior temporal and fusiform gyri to symptoms and neuropsychology in schizophrenia. Schizophr Res. 2007;91(1-3):103–6.
We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.
Lashkari D, Golland P. Convex Clustering with Exemplar-Based Models. Adv Neural Inf Process Syst. 2007;20.
Clustering is often formulated as the maximum likelihood estimation of a mixture model that explains the data. The EM algorithm widely used to solve the resulting optimization problem is inherently a gradient-descent method and is sensitive to initialization. The resulting solution is a local optimum in the neighborhood of the initial guess. This sensitivity to initialization presents a significant challenge in clustering large data sets into many clusters. In this paper, we present a different approach to approximate mixture fitting for clustering. We introduce an exemplar-based likelihood function that approximates the exact likelihood. This formulation leads to a convex minimization problem and an efficient algorithm with guaranteed convergence to the globally optimal solution. The resulting clustering can be thought of as a probabilistic mapping of the data points to the set of exemplars that minimizes the average distance and the information-theoretic cost of mapping. We present experimental results illustrating the performance of our algorithm and its comparison with the conventional approach to mixture model clustering.
Pohl KM, Bouix S, Shenton ME, Grimson EL, Kikinis R. Automatic Segmentation Using Non-Rigid Registration. Med Image Comput Comput Assist Interv. 2007;26(9):1201–1212.
Many neuroanatomy studies rely on brain tissue segmentations of magnetic resonance images (MRI). We present a segmentation tool, which performs this task automatically by analyzing the MRIs as well as tissue specific spatial priors. The priors are aligned to the patient through a non-rigid registration method. The segmentation itself is parameterized by an XML file making the approach easily adjustable to various segmentation problems. The tool is hidden beneath a ’one-button’ user interface, which is simple to install and is applicable to a wide variety of image acquisition protocols.
Balci SK, Golland P, Shenton M, Wells WM III. Free-Form B-spline Deformation Model for Groupwise Registration. Med Image Comput Comput Assist Interv. 2007;10(WS):23–30.
In this work, we extend a previously demonstrated entropy based groupwise registration method to include a free-form deformation model based on B-splines. We provide an efficient implementation using stochastic gradient descents in a multi-resolution setting. We demonstrate the method in application to a set of 50 MRI brain scans and compare the results to a pairwise approach using segmentation labels to evaluate the quality of alignment. Our results indicate that increasing the complexity of the deformation model improves registration accuracy significantly, especially at cortical regions.
Sabuncu MR, Shenton ME, Golland P. Joint Registration and Clustering of Images. Med Image Comput Comput Assist Interv. 2007;10(WS):47–54.
We demonstrate an EM-based algorithm that jointly registers and clusters a group of images using an affine transformation model. The output is a small number of prototype images that represent the different modes of the population. The proposed algorithm can be viewed as a generalization of other well-known atlas construction algorithms, where the collection of prototypes represent multiple atlases for that population. Our experiments indicate that the employment of multiple atlases improves the localization of the underlying structure in a new subject.
Thompson DK, Warfield SK, Carlin JB, Pavlovic M, Wang HX, Bear M, Kean MJ, Doyle LW, Egan GF, Inder TE. Perinatal risk factors altering regional brain structure in the preterm infant. Brain. 2007;130(Pt 3):667–77.
Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between perinatal risk factors and regional neuroanatomical alterations in a large cohort of preterm infants. In a large prospective longitudinal cohort study of 202 preterm and 36 term infants, MR scans at term equivalent were undertaken for volumetric estimates of cortical and deep nuclear grey matter, unmyelinated and myelinated white matter (WM) and CSF within 8 parcellated regions for each hemisphere of the brain. Perinatal correlates analysed in relation to regional brain structure included gender, gestational age, intrauterine growth restriction, bronchopulmonary dysplasia, white matter injury (WMI) and intraventricular haemorrhage. Results revealed region-specific reductions in brain volumes in preterm infants compared with term controls in the parieto-occipital (preterm mean difference: -8.1%; 95% CI = -13.8—2.3%), sensorimotor (-11.6%; -18.2—5.0%), orbitofrontal (-30.6%; -49.8—11.3%) and premotor (-7.6%; -14.2—0.9%) regions. Within the sensorimotor and orbitofrontal regions cortical grey matter and unmyelinated WM were most clearly reduced in preterm infants, whereas deep nuclear grey matter was reduced mainly within the parieto-occipital and subgenual regions. CSF (ventricular and extracerebral) was doubled in volume within the superior regions in preterm infants compared with term controls. Cerebral WMI and intrauterine growth restriction were both associated with a more posterior reduction in brain volumes, whereas bronchopulmonary dysplasia was associated with a more global reduction across all regions. In contrast degree of immaturity was not related to regional brain structure among preterm infants. In summary, preterm birth is associated with regional cerebral tissue reductions, with the adverse pattern varying between risk factors. These findings add to our understanding of the potential pathways leading to altered brain structure and outcome in the preterm infant.