Publications by Year: 2006

2006

Peled S, Friman O, Jolesz FA, Westin CF. Geometrically Constrained Two-Tensor Model for Crossing Tracts in DWI. Magn Reson Imaging. 2006;24(9):1263–70.
MR diffusion tensor imaging (DTI) of the brain and spine provides a unique tool for both visualizing directionality and assessing intactness of white matter fiber tracts in vivo. At the spatial resolution of clinical MRI, much of primate white matter is composed of interdigitating fibers. Analyses based on an assumed single diffusion tensor per voxel yield important information about the average diffusion in the voxel but fail to reveal structure in the presence of crossing tracts. Until today, all clinical scans assume only one tensor, causing potential serious errors in tractography. Since high angular resolution imaging remains, so far, untenable for routine clinical use, a method is proposed whereby the single-tensor field is augmented with additional information gleaned from standard clinical DTI. The method effectively resolves two distinct tract directions within voxels, in which only two tracts are assumed to exist. The underlying constrained two-tensor model is fitted in two stages, utilizing the information present in the single-tensor fit. As a result, the necessary MRI time can be drastically reduced when compared with other approaches, enabling widespread clinical use. Upon evaluation in simulations and application to in vivo human brain DTI data, the method appears to be robust and practical and, if correctly applied, could elucidate tract directions at critical points of uncertainty.
Shah DK, Guinane C, August P, Austin NC, Woodward LJ, Thompson DK, Warfield SK, Clemett R, Inder TE. Reduced occipital regional volumes at term predict impaired visual function in early childhood in very low birth weight infants. Invest Ophthalmol Vis Sci. 2006;47(8):3366–73.
PURPOSE: Premature infants are at increased risk of impaired visual performance related to both cortical and subcortical pathways for oculomotor control. The hypothesis for the current study was that preterm infants with impaired saccades, smooth pursuit, and binocular eye alignment at age 2 years would have smaller occipital brain volumes at term equivalent, as measured by volumetric magnetic resonance (MR) techniques, than would preterm infants without such abnormalities. METHODS: Study participants consisted of 68 infants from a representative regional cohort of 100 preterm infants born between 23 and 33 weeks’ gestation. At term equivalent, all infants underwent MR imaging, and the images were coregistered, tissue segmented into five cerebral tissue subtypes, and further subdivided into eight regions for each hemisphere. At 2 years corrected, all infants completed a comprehensive orthoptic evaluation performed by a single examiner.
Donnell LJO, Kubicki M, Shenton ME, Dreusicke MH, Grimson WEL, Westin CF. A Method for Clustering White Matter Fiber Tracts. AJNR Am J Neuroradiol. 2006;27(5):1032–6.
BACKGROUND/PURPOSE: Despite its potential for visualizing white matter fiber tracts in vivo, diffusion tensor tractography has found only limited applications in clinical research in which specific anatomic connections between distant regions need to be evaluated. We introduce a robust method for fiber clustering that guides the separation of anatomically distinct fiber tracts and enables further estimation of anatomic connectivity between distant brain regions. METHODS: Line scanning diffusion tensor images (LSDTI) were acquired on a 1.5T magnet. Regions of interest for several anatomically distinct fiber tracts were manually drawn; then, white matter tractography was performed by using the Runge-Kutta method to interpolate paths (fiber traces) following the major directions of diffusion, in which traces were seeded only within the defined regions of interest. Next, a fully automatic procedure was applied to fiber traces, grouping them according to a pairwise similarity function that takes into account the shapes of the fibers and their spatial locations. RESULTS: We demonstrated the ability of the clustering algorithm to separate several fiber tracts which are otherwise difficult to define (left and right fornix, uncinate fasciculus and inferior occipitofrontal fasciculus, and corpus callosum fibers). CONCLUSION: This method successfully delineates fiber tracts that can be further analyzed for clinical research purposes. Hypotheses regarding specific fiber connections and their abnormalities in various neuropsychiatric disorders can now be tested.
Meier DS, Guttmann CRG. MRI time series modeling of MS lesion development. Neuroimage. 2006;32(2):531–7.
A mathematical model was applied to new lesion formation in multiple sclerosis, as apparent on frequent T2-weighted MRI. The pathophysiologically motivated two-process model comprises two opposing nonlinear self-limiting processes, intended to represent degenerative and reparatory processes, respectively, investigating T2 activity from a dynamic/temporal rather than a spatial/static perspective. Parametric maps were obtained from the model to characterize the MRI dynamics of lesion development, answering the questions of how long new T2 lesion activity persists, how much residual damage/hyperintensity remains and how the T2 dynamics compare to those of contrast-enhancing MRI indicating active inflammation. 997 MRI examinations were analyzed, acquired weekly to monthly from 45 patients over a 1-year period. The model was applied to all pixels within 332 new lesions, capturing the time profiles with excellent fidelity (r = 0.89 +/- 0.03 average correlation between model and image data). From this modeling perspective, the observed dynamics in new T2 lesions are in agreement with two opposing processes of longitudinal intensity change, such as inflammation and degeneration versus resorbtion and repair. On average, about one third of a new lesion consisted of transient signal change with little or no residual hyperintensity and activity of 10 weeks or less. Global lesion burden as MRI surrogate of disease activity may therefore be confounded by large amounts of transient hyperintensity. T2 activity also persisted significantly beyond the period of contrast enhancement, thereby defining MRI sensitivity toward a subacute phase of lesion development beyond blood-brain barrier patency. Concentric patterns of dynamic properties within a lesion were observed, consistent with concentric histological appearance of resulting MS plaques.
Friman O, Färneback G, Westin CF. A Bayesian approach for stochastic white matter tractography. IEEE Trans Med Imaging. 2006;25(8):965–78.
White matter fiber bundles in the human brain can be located by tracing the local water diffusion in diffusion weighted magnetic resonance imaging (MRI) images. In this paper, a novel Bayesian modeling approach for white matter tractography is presented. The uncertainty associated with estimated white matter fiber paths is investigated, and a method for calculating the probability of a connection between two areas in the brain is introduced. The main merits of the presented methodology are its simple implementation and its ability to handle noise in a theoretically justified way. Theory for estimating global connectivity is also presented, as well as a theorem that facilitates the estimation of the parameters in a constrained tensor model of the local water diffusion profile.
Szymczak A, Stillman A, Tannenbaum A, Mischaikow K. Coronary vessel trees from 3D imagery: a topological approach. Med Image Anal. 2006;10(4):548–59.
We propose a simple method for reconstructing vascular trees from 3D images. Our algorithm extracts persistent maxima of the intensity on all axis-aligned 2D slices of the input image. The maxima concentrate along 1D intensity ridges, in particular along blood vessels. We build a forest connecting the persistent maxima with short edges. The forest tends to approximate the blood vessels present in the image, but also contains numerous spurious features and often fails to connect segments belonging to one vessel in low contrast areas. We improve the forest by applying simple geometric filters that trim short branches, fill gaps in blood vessels and remove spurious branches from the vascular tree to be extracted. Experiments show that our technique can be applied to extract coronary trees from heart CT scans.
Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, Jolesz FA. Supratentorial low-grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology. 2006;239(2):506–13.
PURPOSE: To retrospectively assess the main variables that affect the complete magnetic resonance (MR) imaging-guided resection of supratentorial low-grade gliomas. MATERIALS AND METHODS: Institutional review board approval was obtained for this retrospective HIPAA-compliant study, with the requirement for informed consent waived. Data from 101 patients (61 men, 40 women; mean age, 39 years; age range, 18-72 years) who had nonenhancing supratentorial mass lesions that were histopathologically diagnosed as low-grade (World Health Organization grade II) gliomas and consecutively underwent surgery with intraoperative MR imaging guidance were analyzed. There were 21 low-grade astrocytomas, 64 oligodendrogliomas, and 16 mixed oligoastrocytomas. Initial and residual tumor volumes were measured on intraoperative T2-weighted MR images and three-dimensional spoiled gradient-echo MR images. The anatomic relationships between the tumor and eloquent cortical and/or subcortical regions and the influence of these relationships on the extent of resection were analyzed on the basis of preoperative MR imaging findings. Summary measures, univariate Fisher exact test and t test, and multivariate logistic regression analyses were performed.
Archip N, Rohling R, Dessenne V, Erard PJ, Nolte LP. Anatomical structure modeling from medical images. Comput Methods Programs Biomed. 2006;82(3):203–15.
Some clinical applications, such as surgical planning, require volumetric models of anatomical structures represented as a set of tetrahedra. A practical method of constructing anatomical models from medical images is presented. The method starts with a set of contours segmented from the medical images by a clinician and produces a model that has high fidelity with the contours. Unlike most modeling methods, the contours are not restricted to lie on parallel planes. The main steps are a 3D Delaunay tetrahedralization, culling of non-object tetrahedra, and refinement of the tetrahedral mesh. The result is a high-quality set of tetrahedra whose surface points are guaranteed to match the original contours. The key is to use the distance map and bit volume structures that were created along with the contours. The method is demonstrated on computed tomography, MRI and 3D ultrasound data. Models of 170,000 tetrahedra are constructed on a standard workstation in approximately 10s. A comparison with related methods is also provided.
Wu Y, Warfield SK, Tan L, Wells WM, Meier DS, van Schijndel RA, Barkhof F, Guttmann CRG. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Neuroimage. 2006;32(3):1205–15.
PURPOSE: To automatically segment multiple sclerosis (MS) lesions into three subtypes (i.e., enhancing lesions, T1 "black holes", T2 hyperintense lesions). MATERIALS AND METHODS: Proton density-, T2- and contrast-enhanced T1-weighted brain images of 12 MR scans were pre-processed through intracranial cavity (IC) extraction, inhomogeneity correction and intensity normalization. Intensity-based statistical k-nearest neighbor (k-NN) classification was combined with template-driven segmentation and partial volume artifact correction (TDS+) for segmentation of MS lesions subtypes and brain tissue compartments. Operator-supervised tissue sampling and parameter calibration were performed on 2 randomly selected scans and were applied automatically to the remaining 10 scans. Results from this three-channel TDS+ (3ch-TDS+) were compared to those from a previously validated two-channel TDS+ (2ch-TDS+) method. The results of both the 3ch-TDS+ and 2ch-TDS+ were also compared to manual segmentation performed by experts.
Dimaio SP, Kacher DF, Ellis RE, Fichtinger G, Hata N, Zientara GP, Panych LP, Kikinis R, Jolesz FA. Needle Artifact Localization in 3T MR Images. Stud Health Technol Inform. 2006;119:120–5.
This work explores an image-based approach for localizing needles during MRI-guided interventions, for the purpose of tracking and navigation. Susceptibility artifacts for several needles of varying thickness were imaged, in phantoms, using a 3 tesla MRI system, under a variety of conditions. The relationship between the true needle positions and the locations of artifacts within the images, determined both by manual and automatic segmentation methods, have been quantified and are presented here.