Three-dimensional Adaptive Filtering in Magnetic Resonance Angiography

Westin CF, Wigström L, Loock T, Sjöqvist L, Kikinis R, Knutsson H. Three-dimensional Adaptive Filtering in Magnetic Resonance Angiography. J Magn Reson Imaging. 2001;14(1):63–71.

Abstract

In order to enhance 3D image data from magnetic resonance angiography (MRA), a novel method based on the theory of multidimensional adaptive filtering has been developed. The purpose of the technique is to suppress image noise while enhancing important structures. The method is based on local structure estimation using six 3D orientation selective filters, followed by an adaptive filtering step controlled by the local structure information. The complete filtering procedure requires approximately 3 minutes of computational time on a standard workstation for a 256 x 256 x 64 data set. The method has been evaluated using a mathematical vessel model and in vivo MRA data (both phase contrast and time of flight (TOF)). 3D adaptive filtering results in a better delineation of small blood vessels and efficiently reduces the high-frequency noise. Depending on the data acquisition and the original data type, contrast-to-noise ratio (CNR) improvements of up to 179% (8.9 dB) were observed. 3D adaptive filtering may provide an alternative to prolonging the scan time or using contrast agents in MRA when the CNR is low.
Last updated on 02/24/2023