An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

NIBIB

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Westin

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

News

Recent Publications

  • Goldberg-Zimring D, Warfield SK. Novel image processing techniques to better understand white matter disruption in multiple sclerosis. Autoimmun Rev. 2006;5(8):544–8.
    In Multiple Sclerosis (MS) patients, conventional magnetic resonance imaging (MRI) shows a pattern of white matter (WM) disruption but may also overlook some WM damage. Diffusion tensor MRI (DT-MRI) can provide important in-vivo information about fiber direction that is not provided by conventional MRI. The geometry of diffusion tensors can quantitatively characterize the local structure in tissues. The integration of both conventional MRI and DT-MRI measures together with connectivity-based regional assessment provide a better understanding of the nature and the location of WM abnormalities. Image processing and visualization techniques have been developed and applied to study conventional MRI and DT-MRI of MS patients. These include methods of: Image Segmentation for identifying the different areas of the brain as well as to discriminate normal from abnormal WM, Computerized Atlases, which include structural information obtained from a set of subjects, and Tractographies which can aid in the delineation of WM fiber tracts by tracking connected diffusion tensors. These new techniques hold out the promise of improving our understanding of WM architecture and its disruption in diseases such as MS. In the present study, we review the work that has been done in the development of these techniques and illustrate their applications.
  • Hershkovitz E, Sapiro G, Tannenbaum A, Williams LD. Statistical analysis of RNA backbone. IEEE/ACM Trans Comput Biol Bioinform. 2006;3(1):33–46.
    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones.
  • Dimaio SP, Archip N, Hata N, Talos IF, Warfield SK, Majumdar A, McDannold N, Hynynen K, Morrison PR, Wells WM, Kacher DF, Ellis RE, Golby AJ, Black PM, Jolesz FA, Kikinis R. Image-guided neurosurgery at Brigham and Women s Hospital. IEEE Eng Med Biol Mag. 2006;25(5):67–73.
  • Mewes AUJ, Hüppi PS, Als H, Rybicki FJ, Inder TE, McAnulty GB, Mulkern RV, Robertson RL, Rivkin MJ, Warfield SK. Regional brain development in serial magnetic resonance imaging of low-risk preterm infants. Pediatrics. 2006;118(1):23–33.
    OBJECTIVE: MRI studies have shown that preterm infants with brain injury have altered brain tissue volumes. Investigation of preterm infants without brain injury offers the opportunity to define the influence of early birth on brain development and provide normative data to assess effects of adverse conditions on the preterm brain. In this study, we investigated serial MRI of low-risk preterm infants with the aim to identify regions of altered brain development. METHODS: Twenty-three preterm infants appropriate for gestational age without magnetic resonance-visible brain injury underwent MRI twice at 32 and at 42 weeks’ postmenstrual age. Fifteen term infants were scanned 2 weeks after birth. Brain tissue classification and parcellation were conducted to allow comparison of regional brain tissue volumes. Longitudinal brain growth was assessed from preterm infants’ serial scans. RESULTS: At 42 weeks’ postmenstrual age, gray matter volumes were not different between preterm and term infants. Myelinated white matter was decreased, as were unmyelinated white matter volumes in the region including the central gyri. The gray matter proportion of the brain parenchyma constituted 30% and 37% at 32 and 42 weeks’ postmenstrual age, respectively. CONCLUSIONS: This MRI study of preterm infants appropriate for gestational age and without brain injury establishes the influence of early birth on brain development. No decreased cortical gray matter volumes were found, which is in contrast to findings in preterm infants with brain injury. Moderately decreased white matter volumes suggest an adverse influence of early birth on white matter development. We identified a sharp increase in cortical gray matter volume in preterm infants’ serial data, which may correspond to a critical period for cortical development.
  • Niethammer M, Kalies WD, Mischaikow K, Tannenbaum A. On the detection of simple points in higher dimensions using cubical homology. IEEE Trans Image Process. 2006;15(8):2462–9.
    Simple point detection is an important task for several problems in discrete geometry, such as topology preserving thinning in image processing to compute discrete skeletons. In this paper, the approach to simple point detection is based on techniques from cubical homology, a framework ideally suited for problems in image processing. A (d-dimensional) unitary cube (for a d-dimensional digital image) is associated with every discrete picture element, instead of a point in epsilon(d) (the d-dimensional Euclidean space) as has been done previously. A simple point in this setting then refers to the removal of a unitary cube without changing the topology of the cubical complex induced by the digital image. The main result is a characterization of a simple point p (i.e., simple unitary cube) in terms of the homology groups of the (3d - 1) neighborhood of p for arbitrary, finite dimensions