An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

Recent Publications

  • BACKGROUND AND PURPOSE: Talairach-based parcellation (TP) of human brain magnetic resonance imaging (MRI) data has been used increasingly in clinical research to make regional measurements of brain structures in vivo. Recently, TP has been applied to pediatric research to elucidate the changes in regional brain volumes related to several neurological disorders. However, all freely available tools have been designed to parcellate adult brain MRI data. Parcellation of neonatal MRI data is very challenging owing to the lack of strong signal contrast, variability in signal intensity within tissues, and the small size and thus difficulty in identifying small structures used as landmarks for TP. Hence the authors designed and validated a new interactive tool to parcellate brain MRI data from newborns and young infants. METHODS: The authors’ tool was developed as part of a postprocessing pipeline, which includes registration of multichannel MR images, segmentation, and parcellation of the segmented data. The tool employs user-friendly interactive software to visualize and assign the anatomic landmarks required for parcellation, after which the planes and parcels are generated automatically by the algorithm. The authors then performed 3 sets of validation experiments to test the precision and reliability of their tool. RESULTS: Validation experiments of intra-and interrater reliability on data obtained from newborn and 1-year-old children showed a very high sensitivity of >95% and specificity >99.9%. The authors also showed that rotating and reformatting the original MRI data results in a statistically significant difference in parcel volumes, demonstrating the importance of using a tool such as theirs that does not require realignment of the data prior to parcellation. CONCLUSIONS: To the authors’ knowledge, the presented approach is the first TP method that has been developed and validated specifically for neonatal brain MRI data. Their approach would also be valuable for the analysis of brain MRI data from older children and adults.
  • Clatz O, Delingette H, Talos IF, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.
    We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.
  • Zou KH, Greve DN, Wang M, Pieper SD, Warfield SK, White NS, Manandhar S, Brown GG, Vangel MG, Kikinis R, Wells WM. Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology. 2005;237(3):781–9.
    PURPOSE: To prospectively investigate the factors—including subject, brain hemisphere, study site, field strength, imaging unit vendor, imaging run, and examination visit—affecting the reproducibility of functional magnetic resonance (MR) imaging activations based on a repeated sensory-motor (SM) task. MATERIALS AND METHODS: The institutional review boards of all participating sites approved this HIPAA-compliant study. All subjects gave informed consent. Functional MR imaging data were repeatedly acquired from five healthy men aged 20-29 years who performed the same SM task at 10 sites. Five 1.5-T MR imaging units, four 3.0-T units, and one 4.0-T unit were used. The subjects performed bilateral finger tapping on button boxes with a 3-Hz audio cue and a reversing checkerboard. In a block design, 15-second epochs of alternating baseline and tasks yielded 85 acquisitions per run. Functional MR images were acquired with block-design echo-planar or spiral gradient-echo sequences. Brain activation maps standardized in a unit-sphere for the left and right hemispheres of each subject were constructed. Areas under the receiver operating characteristic curve, intraclass correlation coefficients, multiple regression analysis, and paired Student t tests were used for statistical analyses.
  • Niethammer M, Vela PA, Tannenbaum A. On the Evolution of Vector Distance Functions of Closed Curves. Int J Comput Vis. 2005;65(1-2):5–27.
    Inspired by the work by Gomes et al., we describe and analyze a vector distance function approach for the implicit evolution of closed curves of codimension larger than one. The approach is set up in complete generality, and then applied to the evolution of dynamic geometric active contours in [Formula: see text] (codimension three case). In order to carry this out one needs an explicit expression for the zero level set for which we propose a discrete connectivity method. This leads us to make connections with the new theory of cubical homology. We provide some explicit simulation results in order to illustrate the methodology.
  • Simmross-Wattenberg F, Carranza-Herrezuelo N, Palacios-Camarero C, Casaseca-de-la-Higuera P, Martín-Fernández MA, Aja-Fernández S, Ruiz-Alzola J, Westin CF, Alberola-López C. Group-Slicer: a collaborative extension of 3D-Slicer. J Biomed Inform. 2005;38(6):431–42.
    In this paper, we describe a first step towards a collaborative extension of the well-known 3D-Slicer; this platform is nowadays used as a standalone tool for both surgical planning and medical intervention. We show how this tool can be easily modified to make it collaborative so that it may constitute an integrated environment for expertise exchange as well as a useful tool for academic purposes.