An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

Recent Publications

  • Lasič S, Chakwizira A, Lundell H, Westin CF, Nilsson M. Tuned exchange imaging: Can the filter exchange imaging pulse sequence be adapted for applications with thin slices and restricted diffusion?. NMR in biomedicine. 2024;:e5208. PMID: 38961745

    Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.

  • Tchetchenian A, Zekelman L, Chen Y, Rushmore J, Zhang F, Yeterian EH, Makris N, Rathi Y, Meijering E, Song Y, O’Donnell LJ. Deep multimodal saliency parcellation of cerebellar pathways: Linking microstructure and individual function through explainable multitask learning.. Human brain mapping. 2024;45(12):e70008. PMID: 39185598

    Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion magnetic resonance imaging tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult study (n = 1065), we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds. We thoroughly experimented with all stages of the DeepMSP pipeline, including network selection, structure-function saliency representation, clustering algorithm, and cluster count. We found that a 1D convolutional neural network architecture and a transformer network architecture both performed comparably for the multitask prediction of endurance, strength, reading decoding, and vocabulary comprehension, with both architectures outperforming a fully connected network architecture. Quantitative experiments demonstrated that a proposed low-dimensional saliency representation with an explicit measure of motor versus cognitive category bias achieved the best parcellation results, while a parcel count of four was most successful according to standard cluster quality metrics. Our results suggested that motor and cognitive saliencies are distributed across the cerebellar white matter pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency parcel was most salient for the prediction of both motor and cognitive performance scores and included parts of the middle and superior cerebellar peduncles. Our proposed saliency-based parcellation framework, DeepMSP, enables multimodal, data-driven tractography parcellation. Through utilising both structural features and functional performance measures, this parcellation strategy may have the potential to enhance the study of structure-function relationships of the cerebellar pathways.

  • Pace DF, Contreras HTM, Romanowicz J, Ghelani S, Rahaman I, Zhang Y, Gao P, Jubair MI, Yeh T, Golland P, Geva T, Ghelani S, Powell AJ, Moghari MH. HVSMR-2.0: A 3D cardiovascular MR dataset for whole-heart segmentation in congenital heart disease.. Scientific data. 2024;11(1):721. PMID: 38956063

    Patients with congenital heart disease often have cardiac anatomy that deviates significantly from normal, frequently requiring multiple heart surgeries. Image segmentation from a preoperative cardiovascular magnetic resonance (CMR) scan would enable creation of patient-specific 3D surface models of the heart, which have potential to improve surgical planning, enable surgical simulation, and allow automatic computation of quantitative metrics of heart function. However, there is no publicly available CMR dataset for whole-heart segmentation in patients with congenital heart disease. Here, we release the HVSMR-2.0 dataset, comprising 60 CMR scans alongside manual segmentation masks of the 4 cardiac chambers and 4 great vessels. The images showcase a wide range of heart defects and prior surgical interventions. The dataset also includes masks of required and optional extents of the great vessels, enabling fairer comparisons across algorithms. Detailed diagnoses for each subject are also provided. By releasing HVSMR-2.0, we aim to encourage development of robust segmentation algorithms and clinically relevant tools for congenital heart disease.

  • Halle MW, Kikinis R, Neumann PE. TA2Viewer: A web-based browser for Terminologia Anatomica and online anatomical knowledge.. Clinical anatomy (New York, N.Y.). 2024;37(6):640–648. PMID: 38556919

    TA2Viewer is an open-access, web-based application and database for browsing anatomical terms and associated medical information on a computer or mobile device (https://ta2viewer.openanatomy.org/). It incorporates the official digital version of the second edition of Terminologia Anatomica (TA2) as published by the Federative International Programme for Anatomical Terminology (FIPAT), and adopted by the International Federation of Associations of Anatomists (IFAA) and other associations. It provides a dynamic and interactive view of the Latin and English nomenclatures. The organizational hierarchy of the terminology can be navigated by using a scrollable, expandable, and collapsible structured listing. Interactive search includes the official TA2 terms, synonyms, and related terms. TA2Viewer also uses TA2 term information to provide convenient access to other online resources, including Google web and image searches, PubMed, and Radiopaedia. Using cross-references from Wikidata, which were provided by the Wikipedia community, TA2Viewer offers links to Wikipedia, UBERON, UMLS, FMA, MeSH, NeuroNames, the public domain 20th edition of Gray's Anatomy, and other data sources. In addition, it can optionally use unofficial synonyms from Wikidata to provide multilingual term searches in hundreds of languages. By leveraging TA2, TA2Viewer provides free access to a curated anatomical nomenclature and serves as an index of online anatomical knowledge.

  • Epprecht L, Zekelman L, Reinshagen KL, Xie G, Norton I, Kikinis R, Makris N, Piccirelli M, Huber A, Lee DJ, Zhang F, O’Donnell LJ. Facial Nerve Tractography Using Diffusion MRI: A Comparison of Acquisition b -Values and Single- and Multifiber Tracking Strategies.. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2024;45(9):e647-e654. PMID: 39234825

    HYPOTHESIS: This study investigates the impact of different diffusion magnetic imaging (dMRI) acquisition settings and mathematical fiber models on tractography performance for depicting cranial nerve (CN) VII in healthy young adults.

    BACKGROUND: The aim of this study is to optimize visualization of CN VII for preoperative assessment in surgeries near the nerve in the cerebellopontine angle, reducing surgery-associated complications. The study analyzes 100 CN VII in dMRI images from the Human Connectome Project, using three separate sets with different b values ( b = 1,000 s/mm 2 , b =2,000 s/mm 2 , b =3,000 s/mm 2 ) and four different tractography methods, resulting in 1,200 tractographies analyzed.

    RESULTS: The results show that multifiber and free water (FW) compartment models produce significantly more streamlines than single-fiber tractography. The addition of an FW compartment significantly increases the mean streamline fractional anisotropy (FA). Expert quality ratings showed that the highest rated tractography was the 1 tensor (1T) method without FW at b values of 1,000 s/mm2.

    CONCLUSIONS: In this young and healthy cohort, best tractography results are obtained by using a 1T model without a FW compartment in b =1,000 diffusion MR images. The FW compartment increased the contrast between streamlines and cerebrospinal fluid (higher mean streamline FA). This finding may help ongoing research to improve CN VII tractography results in tumor cases where the nerve is often stretched and thinned by the tumor.